# Copyright © 2023 Apple Inc. from dataclasses import dataclass import math from typing import Optional, Tuple, List import mlx.core as mx import mlx.nn as nn from mlx.utils import tree_map, tree_unflatten @dataclass class ModelArgs: dim: int n_layers: int head_dim: int hidden_dim: int n_heads: int n_kv_heads: int norm_eps: float vocab_size: int class LoRALinear(nn.Module): @staticmethod def from_linear(linear: nn.Linear, rank: int = 8): output_dims, input_dims = linear.weight.shape lora_lin = LoRALinear(input_dims, output_dims, rank) lora_lin.linear = linear return lora_lin def __init__( self, input_dims: int, output_dims: int, lora_rank: int = 8, bias: bool = False ): super().__init__() # Regular linear layer weights self.linear = nn.Linear(input_dims, output_dims, bias=bias) # Low rank lora weights scale = 1 / math.sqrt(input_dims) self.lora_a = mx.random.uniform( low=-scale, high=scale, shape=(input_dims, lora_rank), ) self.lora_b = mx.zeros(shape=(lora_rank, output_dims)) def __call__(self, x): y = self.linear(x.astype(self.linear.weight.dtype)) z = (x @ self.lora_a) @ self.lora_b return y + 2.0 * z class RMSNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5): super().__init__() self.weight = mx.ones((dims,)) self.eps = eps def _norm(self, x): return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps) def __call__(self, x): output = self._norm(x.astype(mx.float32)).astype(x.dtype) return self.weight * output class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.n_heads: int = args.n_heads self.n_kv_heads: int = args.n_kv_heads self.repeats = self.n_heads // self.n_kv_heads self.scale = self.args.head_dim**-0.5 self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False) self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False) self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False) self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False) self.rope = nn.RoPE(args.head_dim, traditional=True) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.wq(x), self.wk(x), self.wv(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) def repeat(a): a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2) return a.reshape([B, self.n_heads, L, -1]) if self.repeats > 1: keys, values = map(repeat, (keys, values)) if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores += mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.wo(output), (keys, values) class FeedForward(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False) self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False) self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.w2(nn.silu(self.w1(x)) * self.w3(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_heads = args.n_heads self.dim = args.dim self.attention = Attention(args) self.feed_forward = FeedForward(args=args) self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r, cache = self.attention(self.attention_norm(x), mask, cache) h = x + r r = self.feed_forward(self.ffn_norm(h)) out = h + r return out, cache class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.n_layers = args.n_layers assert self.vocab_size > 0 self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim) self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)] self.norm = RMSNorm(args.dim, eps=args.norm_eps) self.output = nn.Linear(args.dim, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): h = self.tok_embeddings(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): h, cache[e] = layer(h, mask, cache[e]) return self.output(self.norm(h)), cache