# Copyright © 2024 Apple Inc. import json from functools import partial from pathlib import Path from types import SimpleNamespace from typing import Optional import mlx.core as mx import mlx.nn as nn from tqdm import tqdm from encodec import EncodecModel from t5 import T5 class TextConditioner(nn.Module): def __init__(self, t5_name, input_dim, output_dim): super().__init__() self._t5, self.tokenizer = T5.from_pretrained(t5_name) self.output_proj = nn.Linear(input_dim, output_dim) def __call__(self, text): x = self.tokenizer.encode(text) x = self._t5.encode(x) return self.output_proj(x) class KVCache: def __init__(self, head_dim, n_kv_heads): self.n_kv_heads = n_kv_heads if isinstance(head_dim, int): self.k_head_dim = self.v_head_dim = head_dim elif isinstance(head_dim, tuple) and len(head_dim) == 2: self.k_head_dim, self.v_head_dim = head_dim else: raise ValueError("head_dim must be an int or a tuple of two ints") self.keys = None self.values = None self.offset = 0 self.step = 256 def update_and_fetch(self, keys, values): prev = self.offset if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]: B = keys.shape[0] n_steps = (self.step + keys.shape[2] - 1) // self.step k_shape = (B, self.n_kv_heads, n_steps * self.step, self.k_head_dim) v_shape = (B, self.n_kv_heads, n_steps * self.step, self.v_head_dim) new_k = mx.zeros(k_shape, keys.dtype) new_v = mx.zeros(v_shape, values.dtype) if self.keys is not None: if prev % self.step != 0: self.keys = self.keys[..., :prev, :] self.values = self.values[..., :prev, :] self.keys = mx.concatenate([self.keys, new_k], axis=2) self.values = mx.concatenate([self.values, new_v], axis=2) else: self.keys, self.values = new_k, new_v self.offset += keys.shape[2] self.keys[..., prev : self.offset, :] = keys self.values[..., prev : self.offset, :] = values return self.keys[..., : self.offset, :], self.values[..., : self.offset, :] @property def state(self): return self.keys, self.values class MultiHeadAttention(nn.Module): def __init__(self, dim, n_heads): super().__init__() self.n_heads = n_heads head_dim = dim // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, dim, bias=False) self.k_proj = nn.Linear(dim, dim, bias=False) self.v_proj = nn.Linear(dim, dim, bias=False) self.out_proj = nn.Linear(dim, dim, bias=False) def __call__( self, queries: mx.array, keys: mx.array, values: mx.array, mask: Optional[mx.array] = None, cache: Optional[KVCache] = None, ) -> mx.array: B, L_q, D = queries.shape L_k = keys.shape[1] queries, keys, values = ( self.q_proj(queries), self.k_proj(keys), self.v_proj(values), ) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L_q, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3) if cache is not None: keys, values = cache.update_and_fetch(keys, values) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L_q, -1) return self.out_proj(output) class TransformerBlock(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.decoder.num_attention_heads self.hidden_size = config.decoder.hidden_size self.self_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads) self.cross_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads) self.linear1 = nn.Linear(self.hidden_size, config.decoder.ffn_dim, bias=False) self.linear2 = nn.Linear(config.decoder.ffn_dim, self.hidden_size, bias=False) self.norm1 = nn.LayerNorm(self.hidden_size, eps=1e-5) self.norm_cross = nn.LayerNorm(self.hidden_size, eps=1e-5) self.norm2 = nn.LayerNorm(self.hidden_size, eps=1e-5) def __call__( self, x: mx.array, conditioning: mx.array, mask: Optional[mx.array] = None, cache: Optional[KVCache] = None, ) -> mx.array: xn = self.norm1(x) x += self.self_attn(xn, xn, xn, mask, cache) xn = self.norm_cross(x) x += self.cross_attn(xn, conditioning, conditioning, mask) xn = self.norm2(x) x += self.linear2(nn.gelu(self.linear1(xn))) return x @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state) def top_k_sampling( logits: mx.array, top_k: float, temperature: float, axis: int = -1 ) -> mx.array: """ Apply top-k sampling to logits. Args: logits: The logits from the model's output. top_k: Sample from the top k logits. temperature: Temperature parameter for softmax distribution reshaping. axis: Axis along which to sample. Returns: token selected based on the top-k criterion. """ # referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460 probs = mx.softmax(logits * (1 / temperature), axis=axis) # sort probs in ascending order sorted_indices = mx.argsort(probs, axis=axis) sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=axis) prob_threshold = mx.take(sorted_probs, mx.array(-top_k), axis=axis) # select the top K tokens in probability top_probs = mx.where( sorted_probs > prob_threshold, sorted_probs, 0, ) sorted_token = mx.random.categorical(mx.log(top_probs), axis=axis) token = mx.take_along_axis( sorted_indices, mx.expand_dims(sorted_token, axis), axis=axis ) return token def create_sin_embedding(positions: mx.array, dim: int, max_period: float = 10000): assert dim % 2 == 0 half_dim = dim // 2 adim = mx.arange(half_dim).reshape(1, 1, -1) phase = positions / (max_period ** (adim / (half_dim - 1))) return mx.concatenate([mx.cos(phase), mx.sin(phase)], axis=-1) class MusicGen(nn.Module): def __init__(self, config): self.num_codebooks = config.decoder.num_codebooks self.codebook_size = config.audio_encoder.codebook_size self.bos_token_id = config.decoder.bos_token_id self.hidden_size = config.decoder.hidden_size self.num_attention_heads = config.decoder.num_attention_heads self.sampling_rate = config.audio_encoder.sampling_rate self.text_conditioner = TextConditioner( config.text_encoder._name_or_path, config.text_encoder.d_model, self.hidden_size, ) self.emb = [ nn.Embedding(self.codebook_size + 1, self.hidden_size) for _ in range(self.num_codebooks) ] self.layers = [ TransformerBlock(config) for _ in range(config.decoder.num_hidden_layers) ] self.out_norm = nn.LayerNorm(self.hidden_size, eps=1e-5) self.linears = [ nn.Linear(self.hidden_size, self.codebook_size, bias=False) for _ in range(self.num_codebooks) ] encodec_name = config.audio_encoder._name_or_path.split("/")[-1] encodec_name = encodec_name.replace("_", "-") self._audio_decoder, _ = EncodecModel.from_pretrained( f"mlx-community/{encodec_name}-float32" ) def __call__( self, audio_tokens: mx.array, conditioning: mx.array, cache: list[KVCache] = None, ): if cache is None: cache = [None] * len(self.layers) x = sum([self.emb[k](audio_tokens[..., k]) for k in range(self.num_codebooks)]) offset = cache[0].offset if cache[0] is not None else 0 pos_emb = create_sin_embedding(offset, self.hidden_size) x += pos_emb.astype(x.dtype) for layer, c in zip(self.layers, cache): x = layer(x, conditioning, cache=c) x = self.out_norm(x) x = mx.stack([self.linears[k](x) for k in range(self.num_codebooks)], axis=-1) return x def generate( self, text: str, max_steps: int = 200, top_k: int = 250, temp: float = 1.0, guidance_coef: float = 3.0, ) -> mx.array: """ Generates a waveform conditioned on `text`. Args: text (str): The text to condition generation on. max_steps (int): Max steps to generate. top_k (int): Top k used in sampling. temp (float): Sampling softmax temperature. guidance_coef (float): Classifier free guidance coefficent. Used to combine conditional and unconditional logits. Returns: An mx.array of audio samples of shape ``(num_samples,)``. """ # Assuming no audio prompt we start with all bos token for the codebooks audio_shape = (1, max_steps + 1, self.num_codebooks) audio_seq = mx.full(audio_shape, self.bos_token_id) text_tokens = self.text_conditioner(text) # Compute conditional and unconditional logits in one batch text_tokens = mx.concatenate([text_tokens, mx.zeros_like(text_tokens)], axis=0) head_dim = self.hidden_size // self.num_attention_heads cache = [ KVCache(head_dim, self.num_attention_heads) for _ in range(len(self.layers)) ] for offset in tqdm(range(max_steps)): audio_input = mx.tile(audio_seq[:, offset : offset + 1], [2, 1, 1]) audio_logits = self(audio_input, text_tokens, cache) cond_logits, uncond_logits = audio_logits[:1], audio_logits[1:2] audio_logits = uncond_logits + (cond_logits - uncond_logits) * guidance_coef audio_tokens = top_k_sampling(audio_logits, top_k, temp, axis=-2) # "delay" pattern audio_tokens[..., offset + 1 :] = self.bos_token_id audio_tokens[..., : -max_steps + offset] = self.bos_token_id audio_seq[:, offset + 1 : offset + 2] = audio_tokens mx.eval(audio_seq) # Undo delay for i in range(self.num_codebooks): audio_seq[:, : -self.num_codebooks, i] = audio_seq[ :, i : -self.num_codebooks + i, i ] audio_seq = audio_seq[:, 1 : -self.num_codebooks + 1] audio_seq = mx.swapaxes(audio_seq, -1, -2)[:, mx.newaxis] audio = self._audio_decoder.decode(audio_seq, audio_scales=[None]) return audio[0] @classmethod def sanitize(cls, weights): out_weights = {} for k, arr in weights.items(): if k.startswith("transformer."): k = k[len("transformer.") :] if "cross_attention" in k: k = k.replace("cross_attention", "cross_attn") if "condition_provider" in k: k = k.replace( "condition_provider.conditioners.description", "text_conditioner" ) if "in_proj_weight" in k: dim = arr.shape[0] // 3 name = "in_proj_weight" out_weights[k.replace(name, "q_proj.weight")] = arr[:dim] out_weights[k.replace(name, "k_proj.weight")] = arr[dim : dim * 2] out_weights[k.replace(name, "v_proj.weight")] = arr[dim * 2 :] continue out_weights[k] = arr return out_weights @classmethod def from_pretrained(cls, path_or_repo: str): import torch from huggingface_hub import snapshot_download path = Path(path_or_repo) if not path.exists(): path = Path( snapshot_download( repo_id=path_or_repo, allow_patterns=["*.json", "state_dict.bin"], ) ) with open(path / "config.json", "r") as f: config = SimpleNamespace(**json.load(f)) config.text_encoder = SimpleNamespace(**config.text_encoder) config.audio_encoder = SimpleNamespace(**config.audio_encoder) config.decoder = SimpleNamespace(**config.decoder) weights = torch.load(path / "state_dict.bin", weights_only=True)["best_state"] weights = {k: mx.array(v) for k, v in weights.items()} weights = cls.sanitize(weights) model = MusicGen(config) model.load_weights(list(weights.items())) return model