from dataclasses import dataclass from typing import Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int = 2048 num_attention_heads: int = 16 num_hidden_layers: int = 24 kv_channels: int = 128 max_position_embeddings: int = 8192 layer_norm_epsilon: float = 1e-6 intermediate_size: int = 11008 no_bias: bool = True vocab_size: int = 151936 num_key_value_heads = None def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads class RMSNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5): super().__init__() self.weight = mx.ones((dims,)) self.eps = eps def _norm(self, x): return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps) def __call__(self, x): output = self._norm(x.astype(mx.float32)).astype(x.dtype) return self.weight * output class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() hidden_size = args.hidden_size self.num_attention_heads = args.num_attention_heads hidden_size_per_attention_head = hidden_size // self.num_attention_heads self.rotary_emb = nn.RoPE(hidden_size_per_attention_head, traditional=False) proj_size = args.kv_channels * self.num_attention_heads self.c_attn = nn.Linear(hidden_size, proj_size * 3, bias=True) self.c_proj = nn.Linear(hidden_size, proj_size, bias=not args.no_bias) self.scale = hidden_size_per_attention_head**-0.5 def __call__(self, x, mask=None, cache=None): qkv = self.c_attn(x) q, k, v = mx.split(qkv, 3, axis=-1) B, L, _ = q.shape q = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3) k = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3) v = v.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3) if cache is not None: k_cache, v_cache = cache q = self.rotary_emb(q, offset=k_cache.shape[2]) k = self.rotary_emb(k, offset=k_cache.shape[2]) k = mx.concatenate([k_cache, k], axis=2) v = mx.concatenate([v_cache, v], axis=2) else: q = self.rotary_emb(q) k = self.rotary_emb(k) scores = (q * self.scale) @ k.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) v_hat = (scores @ v).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.c_proj(v_hat), (k, v) class MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.w1 = nn.Linear( args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias ) self.w2 = nn.Linear( args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias ) self.c_proj = nn.Linear( args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias ) def __call__(self, x): a1 = self.w1(x) a2 = self.w2(x) return self.c_proj(a1 * nn.silu(a2)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.ln_1 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) self.attn = Attention(args) self.ln_2 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) self.mlp = MLP(args) def __call__(self, x, mask=None, cache=None): residual = x x = self.ln_1(x) x, cache = self.attn(x, mask=mask, cache=cache) residual = x + residual x = self.ln_2(residual) x = self.mlp(x) x = x + residual return x, cache class QwenModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.wte = nn.Embedding(args.vocab_size, args.hidden_size) self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)] self.ln_f = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, inputs, mask=None, cache=None): x = self.wte(inputs) mask = None T = x.shape[1] if T > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(T) mask = mask.astype(x.dtype) if cache is None: cache = [None] * len(self.h) for e, layer in enumerate(self.h): x, cache[e] = layer(x, mask, cache[e]) x = self.ln_f(x[:, T - 1 : T, :]) return x, cache class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model_type = config.model_type self.transformer = QwenModel(config) self.lm_head = nn.Linear( config.hidden_size, config.vocab_size, bias=not config.no_bias ) def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> Tuple[mx.array, mx.array]: y, cache = self.transformer(x, mask, cache) return self.lm_head(y), cache