# Copyright © 2023-2024 Apple Inc. from functools import partial import mlx.core as mx @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state) def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array: """ Apply top-p (nucleus) sampling to logits. Args: logits: The logits from the model's output. top_p: The cumulative probability threshold for top-p filtering. temperature: Temperature parameter for softmax distribution reshaping. Returns: token selected based on the top-p criterion. """ # referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460 probs = mx.softmax(logits * (1 / temperature), axis=-1) # sort probs in ascending order sorted_indices = mx.argsort(probs, axis=-1) sorted_probs = probs[..., sorted_indices.squeeze(0)] cumulative_probs = mx.cumsum(sorted_probs, axis=-1) # select tokens with cumulative probs below threshold top_probs = mx.where( cumulative_probs > 1 - top_p, sorted_probs, 0, ) sorted_token = mx.random.categorical(mx.log(top_probs)) token = sorted_indices.squeeze(0)[sorted_token] return token @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state) def categorical_sampling(logits, temp): return mx.random.categorical(logits * (1 / temp))