# Copyright © 2023-2024 Apple Inc. from dataclasses import dataclass from typing import Optional, Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int head_dim: int rms_norm_eps: float vocab_size: int num_key_value_heads: int rope_theta: float = 10000 rope_traditional: bool = False attn_logit_softcapping: float = 50.0 final_logit_softcapping: float = 30.0 query_pre_attn_scalar: float = 144.0 class RMSNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5): super().__init__() self.weight = mx.ones((dims,)) self.eps = eps def __call__(self, x): return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps) class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.repeats = n_heads // n_kv_heads self.head_dim = head_dim = args.head_dim self.scale = 1.0 / (args.query_pre_attn_scalar**0.5) self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) self.attn_logit_softcapping = args.attn_logit_softcapping self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=args.rope_theta, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries * self.scale if self.repeats > 1: queries = queries.reshape( B, self.n_kv_heads, self.repeats, L, self.head_dim ) keys = mx.expand_dims(keys, 2) values = mx.expand_dims(values, 2) scores = queries @ keys.swapaxes(-1, -2) scores = mx.tanh(scores / self.attn_logit_softcapping) scores *= self.attn_logit_softcapping if mask is not None: scores = scores + mask scores = mx.softmax(scores, precise=True, axis=-1) output = scores @ values if self.repeats > 1: output = output.reshape(B, self.n_heads, L, self.head_dim) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.down_proj(nn.gelu(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.num_attention_heads = args.num_attention_heads self.hidden_size = args.hidden_size self.self_attn = Attention(args) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.pre_feedforward_layernorm = RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) self.post_feedforward_layernorm = RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x.astype(mx.float32)), mask, cache) h = x + self.post_attention_layernorm(r) r = self.mlp(self.pre_feedforward_layernorm(h).astype(mx.float16)).astype( mx.float32 ) out = h + self.post_feedforward_layernorm(r) return out class GemmaModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args) for _ in range(args.num_hidden_layers) ] self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) h = h * (self.args.hidden_size**0.5) mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model_type = args.model_type self.final_logit_softcapping = args.final_logit_softcapping self.model = GemmaModel(args) self.args = args def __call__( self, inputs: mx.array, cache=None, ): out = self.model(inputs, cache) out = self.model.embed_tokens.as_linear(out) out = mx.tanh(out / self.final_logit_softcapping) out = out * self.final_logit_softcapping return out @property def layers(self): return self.model.layers @property def head_dim(self): return self.args.head_dim @property def n_kv_heads(self): return self.args.num_key_value_heads