import inspect import math from dataclasses import dataclass from typing import Tuple import mlx.core as mx import mlx.nn as nn from .switch_layers import SwitchMLP @dataclass class ModelArgs: model_type: str num_vocab: int = 51200 model_dim: int = 2560 num_heads: int = 32 num_layers: int = 32 rotary_dim: int = 32 num_experts_per_tok: int = 2 num_local_experts: int = 4 @classmethod def from_dict(cls, params): return cls( **{ k: v for k, v in params.items() if k in inspect.signature(cls).parameters } ) class RoPEAttention(nn.Module): def __init__(self, dims: int, num_heads: int, rotary_dim: int): super().__init__() self.num_heads = num_heads self.rope = nn.RoPE(rotary_dim, traditional=False) self.Wqkv = nn.Linear(dims, 3 * dims) self.out_proj = nn.Linear(dims, dims) def __call__(self, x, mask=None, cache=None): qkv = self.Wqkv(x) queries, keys, values = mx.split(qkv, 3, axis=-1) # Extract some shapes num_heads = self.num_heads B, L, D = queries.shape # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries.astype(mx.float32) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) output = mx.fast.scaled_dot_product_attention( queries.astype(mx.float32), keys, values, scale=scale, mask=mask ).astype(values.dtype) output = output.moveaxis(2, 1).reshape(B, L, -1) return self.out_proj(output) class MOE(nn.Module): def __init__(self, args: ModelArgs, dim: int, hidden_dim: int): super().__init__() self.dim = dim self.hidden_dim = hidden_dim self.num_experts = args.num_local_experts self.num_experts_per_tok = args.num_experts_per_tok self.switch_mlp = SwitchMLP( self.dim, self.hidden_dim, self.num_experts, bias=True ) self.gate = nn.Linear(args.model_dim, self.num_experts, bias=False) def __call__(self, x: mx.array) -> mx.array: gates = self.gate(x) k = self.num_experts_per_tok inds = mx.stop_gradient(mx.argpartition(-gates, kth=k - 1, axis=-1))[..., :k] scores = mx.take_along_axis(gates, inds, axis=-1) scores = mx.softmax(scores, axis=-1, precise=True) y = self.switch_mlp(x, inds) y = (y * scores[..., None]).sum(axis=-2) return y class ParallelBlock(nn.Module): def __init__(self, config: ModelArgs): super().__init__() dims = config.model_dim mlp_dims = dims * 4 self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim) self.ln = nn.LayerNorm(dims) self.moe = MOE(config, dims, mlp_dims) def __call__(self, x, mask, cache): h = self.ln(x) attn_h = self.mixer(h, mask, cache) ff_h = self.moe(h) return attn_h + ff_h + x class TransformerDecoder(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.embd = Embd(config) self.h = [ParallelBlock(config) for i in range(config.num_layers)] def __call__(self, x, mask, cache): x = self.embd(x) if cache is None: cache = [None] * len(self.h) for layer, c in zip(self.h, cache): x = layer(x, mask, c) return x class Embd(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.wte = nn.Embedding(config.num_vocab, config.model_dim) def __call__(self, x): return self.wte(x) class OutputHead(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.ln = nn.LayerNorm(config.model_dim) self.linear = nn.Linear(config.model_dim, config.num_vocab) def __call__(self, inputs): return self.linear(self.ln(inputs)) class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model_type = config.model_type self.transformer = TransformerDecoder(config) self.lm_head = OutputHead(config) self.args = config def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> Tuple[mx.array, mx.array]: mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y = self.transformer(x, mask, cache) return self.lm_head(y) def sanitize(self, weights): if "transformer.h.0.moe.mlp.0.fc1.weight" not in weights: return weights for l in range(self.args.num_layers): prefix = f"transformer.h.{l}" for n in ["fc1", "fc2"]: for k in ["weight", "scales", "biases", "bias"]: to_join = [ weights.pop(f"{prefix}.moe.mlp.{e}.{n}.{k}") for e in range(self.args.num_local_experts) ] if to_join: weights[f"{prefix}.moe.switch_mlp.{n}.{k}"] = mx.stack(to_join) return weights @property def layers(self): return self.transformer.h @property def head_dim(self): return self.args.model_dim // self.args.num_heads @property def n_kv_heads(self): return self.args.num_heads