import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): model_type: str num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool chunk_size: int tie_word_embeddings: bool time_step_limit: Tuple[float, float] time_step_rank: Union[int, str] time_step_min: float time_step_max: float time_step_floor: float norm_before_gate: bool = True def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class DepthWiseConv1d(nn.Module): def __init__(self, channels, kernel_size, bias=True, padding=0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.padding = padding self.weight = mx.random.normal((channels, kernel_size, 1)) self.bias = mx.zeros((channels,)) if bias else None def __call__(self, x, cache=None): B, L, C = x.shape _, K, _ = self.weight.shape if cache is not None: x = mx.concatenate([cache, x], axis=1) else: x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)]) y = mx.conv_general(x, self.weight, groups=C) y = y + self.bias return y, x[:, -K + 1:, :] def ssd_forward_attn( x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, D: mx.array, dt_bias: mx.array, dt_min: float, dt_max: float, prev_state=None, ) -> Tuple[mx.array, mx.array]: b, l, h, dh = x.shape _, _, g, _ = B.shape # Process dt if dt_bias is not None: dt = dt + dt_bias.reshape(1, 1, -1) dt = nn.softplus(dt) dt = mx.clip(dt, a_min=dt_min, a_max=dt_max) # Reshape tensors B_reshaped = mx.swapaxes(mx.swapaxes(B, 1, 3), 1, 2) C_reshaped = mx.swapaxes(C, 1, 2) # Compute CB CB = C_reshaped @ B_reshaped CB = mx.repeat(CB, repeats=h // g, axis=1) # Compute decay terms dtA = dt * A.reshape(1, 1, -1) dtA = mx.swapaxes(dtA, 1, 2) decay = mx.exp(segsum(dtA)) # Create attention matrix surrogate_attention_matrix = mx.tril(CB * decay, 0) # Apply attention dtx = dt.reshape(b, l, h, 1) * x y = surrogate_attention_matrix @ dtx.swapaxes(1, 2) y = mx.swapaxes(y, 1, 2) # Compute next state decay_last = decay[:, :, -1, :].reshape(b, h, l).swapaxes(1, 2).reshape(b, l, h, 1) B_for_state = mx.repeat(B_reshaped, h // g, axis=1).swapaxes(2, 3) dtxdecay = dtx * decay_last dtxdecay = dtxdecay.swapaxes(1, 2).swapaxes(2, 3) # Calculate new state contribution new_state_contribution = dtxdecay @ B_for_state # Initialize or update state if prev_state is not None: # Simply use the previous state if it exists # This is a simplified approach - just use the new state # In a real implementation, you'd want to properly update based on your SSM formulation next_state = new_state_contribution else: next_state = new_state_contribution # Add skip connection if D is provided if D is not None: y += x * D.reshape(1, 1, h, 1) # Reshape output y = y.reshape(b, l, h * dh) return y, next_state def segsum(x): # x shape: [b, h, l] b, h, l = x.shape indices = mx.arange(l) mask = indices[:, None] >= indices[None, :] # [l, l] lower triangular mask # Expand x for broadcasting x_expanded = x.reshape(b, h, l, 1) # [b, h, l, 1] # Apply mask and sum masked_x = x_expanded * mask.reshape(1, 1, l, l) # [b, h, l, l] x_segsum = mx.sum(masked_x, axis=2, keepdims=True) # [b, h, 1, l] return x_segsum class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.d_model = args.hidden_size self.d_state = args.state_size self.d_conv = args.conv_kernel self.expand = args.expand self.d_inner = int(self.expand * self.d_model) self.n_groups = args.n_groups self.n_heads = args.num_heads self.d_head = self.d_inner // self.n_heads self.chunk_size = args.chunk_size d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias) self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range self.D = mx.random.normal((self.n_heads,)) * args.initializer_range self.conv1d = DepthWiseConv1d( channels=self.d_inner + 2 * self.n_groups * self.d_state, kernel_size=self.d_conv, bias=args.use_conv_bias, padding=self.d_conv-1 ) self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias) def __call__(self, u: mx.array, cache=None): batch_size, seq_len, _ = u.shape if cache is None: cache = [None, None] else: conv_state, ssm_state = cache zxBCdt = self.in_proj(u) z, xBC, dt = mx.split( zxBCdt, [self.d_inner, 2 * self.d_inner + 2 * self.n_groups * self.d_state], axis=-1 ) xBC, conv_state = self.conv1d(xBC, conv_state) xBC = xBC * mx.sigmoid(xBC) xBC = xBC[:, :seq_len, :] x, B, C = mx.split( xBC, [self.d_inner, self.d_inner + self.d_state * self.n_groups], axis=-1 ) x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head)) B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1)) C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1)) A = -mx.exp(self.A_log) y, next_ssm_state = ssd_forward_attn( x=x, dt=dt, A=-mx.exp(self.A_log), B=B, C=C, D=self.D, dt_bias=self.dt_bias, dt_min=self.args.time_step_min, dt_max=self.args.time_step_max, prev_state=ssm_state ) if self.args.norm_before_gate: y = self.norm(y) y = y * nn.silu(z) else: y = y * nn.silu(z) y = self.norm(y) y = self.out_proj(y) cache[0] = conv_state cache[1] = next_ssm_state return y class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.residual_in_fp32 = args.residual_in_fp32 self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): if self.residual_in_fp32: x = x.astype(mx.float32) normed = self.norm(x) output = self.mixer(normed, cache) return output + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) hidden = x for layer, c in zip(self.layers, cache): hidden = layer(hidden, c) return self.norm_f(hidden) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): hidden = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(hidden) else: logits = self.lm_head(hidden) return logits def make_cache(self): return [MambaCache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers