import math from dataclasses import dataclass from typing import Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str vocab_size: int hidden_size: int num_attention_heads: int num_hidden_layers: int num_key_value_heads: int intermediate_size: int rope_theta: float use_qkv_bias: bool partial_rotary_factor: float layer_norm_eps: float use_parallel_residual: bool = False qk_layernorm: bool = False class LayerNormPerHead(nn.Module): def __init__(self, head_dim, num_heads, eps): super().__init__() self.norms = [ nn.LayerNorm(head_dim, eps=eps, bias=False) for _ in range(num_heads) ] self.eps = eps def __call__(self, x): w = mx.stack([n.weight for n in self.norms]) return w * mx.fast.layer_norm(x, None, None, self.eps) class Attention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.rope_theta = config.rope_theta self.partial_rotary_factor = config.partial_rotary_factor if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias ) self.k_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias, ) self.v_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias, ) self.o_proj = nn.Linear( self.num_heads * self.head_dim, self.hidden_size, bias=False ) self.rope = nn.RoPE( int(self.partial_rotary_factor * self.head_dim), traditional=False, base=self.rope_theta, ) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = LayerNormPerHead( self.head_dim, self.num_heads, eps=config.layer_norm_eps ) self.k_layernorm = LayerNormPerHead( self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps ) def __call__(self, x, mask=None, cache=None): queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Extract some shapes B, L, D = queries.shape queries = queries.reshape(B, L, self.num_heads, -1) keys = keys.reshape(B, L, self.num_key_value_heads, -1) if self.qk_layernorm: queries = self.q_layernorm(queries) keys = self.k_layernorm(keys) queries = queries.transpose(0, 2, 1, 3) keys = keys.transpose(0, 2, 1, 3) values = values.reshape(B, L, self.num_key_value_heads, -1).transpose( 0, 2, 1, 3 ) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries.astype(mx.float32) keys = keys.astype(mx.float32) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=scale, mask=mask ).astype(values.dtype) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class DecoderLayer(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.self_attn = Attention(config=config) self.mlp = MLP(config.hidden_size, config.intermediate_size) self.input_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps, ) self.use_parallel_residual = config.use_parallel_residual if not self.use_parallel_residual: self.post_attention_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps, ) def __call__(self, x, mask, cache): h = self.input_layernorm(x) r = self.self_attn(h, mask, cache) if self.use_parallel_residual: out = x + r + self.mlp(h) else: h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class StableLM(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = [DecoderLayer(config) for i in range(config.num_hidden_layers)] self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def __call__(self, x, mask, cache): x = self.embed_tokens(x) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): x = layer(x, mask, cache=c) return self.norm(x) class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model_type = config.model_type self.model = StableLM(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.args = config def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> Tuple[mx.array, mx.array]: mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y = self.model(x, mask, cache) return self.lm_head(y) @property def layers(self): return self.model.layers @property def head_dim(self): return self.args.hidden_size // self.args.num_attention_heads @property def n_kv_heads(self): return self.args.num_key_value_heads