# Copyright © 2023 Apple Inc. import argparse import json import numpy as np from pathlib import Path import shutil import os import torch if __name__ == "__main__": parser = argparse.ArgumentParser( description="Convert Mistral or Llama models to MLX.", ) parser.add_argument( "--torch_model", type=str, default="mistral-7B-v0.1/", help="The torch model directory", ) parser.add_argument( "--mlx_model", type=str, default="mlx-mistral-7B-v0.1/", help="The directory to store the mlx model", ) args = parser.parse_args() torch_path = Path(args.torch_model) if not os.path.exists(args.mlx_model): os.makedirs(args.mlx_model) mlx_path = Path(args.mlx_model) state = torch.load(str(torch_path / "consolidated.00.pth")) np.savez( str(mlx_path / "weights.npz"), **{k: v.to(torch.float16).numpy() for k, v in state.items()} ) # Copy the tokenizer shutil.copyfile( str(torch_path / "tokenizer.model"), str(mlx_path / "tokenizer.model"), ) # Copy the params with open(torch_path / "params.json", "r") as f: config = json.loads(f.read()) if "sliding_window" in config: config.pop("sliding_window") if "n_kv_heads" not in config: config["n_kv_heads"] = n_heads if "head_dim" not in config: config["head_dim"] = config["dim"] // n_heads if "hidden_dim" not in config: config["hidden_dim"] = state["layers.0.feed_forward.w1.weight"].shape with open(mlx_path / "params.json", "w") as outfile: json.dump(config, outfile)