# Copyright © 2023 Apple Inc. import argparse import json import math import numpy as np from pathlib import Path from sentencepiece import SentencePieceProcessor import time from typing import Optional, Tuple, List import mlx.core as mx import mlx.nn as nn import mlx.optimizers as optim from mlx.utils import tree_map, tree_flatten, tree_unflatten from models import ModelArgs, Model, LoRALinear import wikisql def build_parser(): parser = argparse.ArgumentParser(description="LoRA finetuning with Llama or Mistral") parser.add_argument( "--model", required=True, help="A path to the model files containing the tokenizer, weights, config." ) # Generation args parser.add_argument( "--num-tokens", "-n", type=int, default=100, help="How many tokens to generate" ) parser.add_argument( "--write-every", type=int, default=1, help="After how many tokens to detokenize" ) parser.add_argument( "--temp", type=float, default=0.8, help="The sampling temperature" ) parser.add_argument( "--prompt", "-p", type=str, help="The prompt for generation", default=None, ) # Training args parser.add_argument( "--train", action="store_true", help="Do training", ) parser.add_argument("--batch_size", type=int, default=4, help="Minibatch size.") parser.add_argument( "--iters", type=int, default=1000, help="Iterations to train for." ) parser.add_argument( "--val_batches", type=int, default=100, help="Number of validation batches, -1 uses the entire validation set.", ) parser.add_argument( "--learning_rate", type=float, default=1e-5, help="Adam learning rate." ) parser.add_argument( "--steps_per_report", type=int, default=10, help="Number of training steps between loss reporting.", ) parser.add_argument( "--steps_per_eval", type=int, default=200, help="Number of training steps between validations.", ) parser.add_argument( "--resume_adapter_file", type=str, default=None, help="Load path to resume training with the given adapter weights.", ) parser.add_argument( "--adapter_file", type=str, default="adapters.npz", help="Save/load path for the trained adapter weights.", ) parser.add_argument( "--test", action="store_true", help="Evaluate on the test set after training", ) parser.add_argument( "--test_batches", type=int, default=500, help="Number of test set batches, -1 uses the entire test set.", ) parser.add_argument("--seed", type=int, default=0, help="The PRNG seed") return parser class Tokenizer: def __init__(self, model_path: str): assert Path(model_path).exists(), model_path self._model = SentencePieceProcessor(model_file=model_path) self._sep = "▁" assert self._model.vocab_size() == self._model.get_piece_size() def encode(self, s: str) -> List[int]: return [self._model.bos_id(), *self._model.encode(s)] def decode(self, t: List[int]) -> str: out = self._model.decode(t) if t and self._model.id_to_piece(t[0])[0] == self._sep: return " " + out return out @property def vocab_size(self) -> int: return self._model.vocab_size() def loss(model, inputs, targets, lengths): # Run model on inputs logits, _ = model(inputs) # Mask padding tokens length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None] # Calculate the loss ce = nn.losses.cross_entropy(logits, targets) * length_mask ntoks = length_mask.sum() ce = ce.sum() / ntoks return ce, ntoks def iterate_batches(dset, tokenizer, batch_size, shuffle=True): # Shuffle indices indices = np.arange(len(dset)) if shuffle: indices = np.random.permutation(indices) # Collect batches from dataset for i in range(0, len(indices) - batch_size + 1, batch_size): # Encode batch batch = [tokenizer.encode(dset[indices[i + j]]) for j in range(batch_size)] lengths = [len(x) for x in batch] # Pad to the max length batch_arr = np.zeros((batch_size, max(lengths)), np.int32) for j in range(batch_size): batch_arr[j, : lengths[j]] = batch[j] batch = mx.array(batch_arr) yield batch[:, :-1], batch[:, 1:], mx.array(lengths) def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches): all_losses = [] ntokens = 0 for it, batch in zip( range(num_batches), iterate_batches(dataset, tokenizer, batch_size, shuffle=False), ): losses, toks = loss(model, *batch) all_losses.append((losses * toks).item()) ntokens += toks.item() return np.sum(all_losses) / ntokens def train(model, train_set, val_set, optimizer, loss, tokenizer, args): # Create value and grad function for loss loss_value_and_grad = nn.value_and_grad(model, loss) losses = [] n_tokens = 0 # Main training loop start = time.perf_counter() for it, batch in zip( range(args.iters), iterate_batches(train_set, tokenizer, args.batch_size) ): # Forward and backward pass (lvalue, toks), grad = loss_value_and_grad(model, *batch) # Model update optimizer.update(model, grad) mx.eval(model.parameters(), optimizer.state, lvalue) # Record loss losses.append(lvalue.item()) n_tokens += toks.item() # Report training loss if needed if (it + 1) % args.steps_per_report == 0: train_loss = np.mean(losses) stop = time.perf_counter() print( f"Iter {it + 1}: Train loss {train_loss:.3f}, " f"It/sec {args.steps_per_report / (stop - start):.3f}, " f"Tokens/sec {float(n_tokens) / (stop - start):.3f}" ) losses = [] n_tokens = 0 start = time.perf_counter() # Report validation loss if needed if it == 0 or (it + 1) % args.steps_per_eval == 0: stop = time.perf_counter() val_loss = evaluate( model, val_set, loss, tokenizer, args.batch_size, args.val_batches ) print( f"Iter {it + 1}: " f"Val loss {val_loss:.3f}, " f"Val took {(time.perf_counter() - stop):.3f}s" ) start = time.perf_counter() def generate(model, prompt, tokenizer, args): print(args.prompt, end="", flush=True) prompt = mx.array(tokenizer.encode(args.prompt)) def generate_step(): temp = args.temp def sample(logits): if temp == 0: return mx.argmax(logits, axis=-1) else: return mx.random.categorical(logits * (1 / temp)) logits, cache = model(prompt[None]) y = sample(logits[:, -1, :]) yield y while True: logits, cache = model(y[:, None], cache) y = sample(logits.squeeze(1)) yield y tokens = [] for token, _ in zip(generate_step(), range(args.num_tokens)): tokens.append(token) if (len(tokens) % 10) == 0: mx.eval(tokens) s = tokenizer.decode([t.item() for t in tokens]) print(s, end="", flush=True) tokens = [] mx.eval(tokens) s = tokenizer.decode([t.item() for t in tokens]) print(s, flush=True) def load_model(folder: str, dtype=mx.float32): model_path = Path(folder) tokenizer = Tokenizer(str(model_path / "tokenizer.model")) with open(model_path / "params.json", "r") as f: config = json.loads(f.read()) model_args = ModelArgs(**config) if config.get("vocab_size", -1) < 0: config["vocab_size"] = tokenizer.vocab_size weights = mx.load(str(model_path / "weights.npz")) weights = tree_unflatten(list(weights.items())) weights = tree_map(lambda p: p.astype(dtype), weights) model = Model(model_args) model.update(weights) return model, tokenizer if __name__ == "__main__": parser = build_parser() args = parser.parse_args() np.random.seed(args.seed) print("Loading pretrained model") model, tokenizer = load_model(args.model) # Freeze all layers other than LORA linears model.freeze() for l in model.layers[16:32]: l.attention.wq = LoRALinear.from_linear(l.attention.wq) l.attention.wv = LoRALinear.from_linear(l.attention.wv) p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6 print(f"Total parameters {p:.3f}M") p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6 print(f"Trainable parameters {p:.3f}M") print("Loading datasets") train_set, valid_set, test_set = wikisql.load() # Resume training the given adapters. if args.resume_adapter_file is not None: print(f"Loading pretrained adapters from {args.resume_adapter_file}") model.load_weights(args.resume_adapter_file) if args.train: print("Training") opt = optim.Adam(learning_rate=args.learning_rate) # Train model train(model, train_set, valid_set, opt, loss, tokenizer, args) # Save adapter weights mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters()))) # Load the LoRA adapter weights which we assume should exist by this point model.load_weights(args.adapter_file) if args.test: print("Testing") test_loss = evaluate( model, test_set, loss, tokenizer, args.batch_size, num_batches=args.test_batches, ) test_ppl = math.exp(test_loss) print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.") if args.prompt is not None: print("Generating") generate(model, args.prompt, tokenizer, args)