import inspect import math from dataclasses import dataclass from typing import Tuple import mlx.core as mx import mlx.nn as nn import numpy as np @dataclass class ModelArgs: model_type: str max_sequence_length: int = 2048 num_vocab: int = 51200 model_dim: int = 2560 num_heads: int = 32 num_layers: int = 32 rotary_dim: int = 32 num_experts_per_tok: int = 2 num_local_experts: int = 4 @classmethod def from_dict(cls, params): return cls( **{ k: v for k, v in params.items() if k in inspect.signature(cls).parameters } ) class RoPEAttention(nn.Module): def __init__(self, dims: int, num_heads: int, rotary_dim: int): super().__init__() self.num_heads = num_heads self.rope = nn.RoPE(rotary_dim, traditional=False) self.Wqkv = nn.Linear(dims, 3 * dims) self.out_proj = nn.Linear(dims, dims) def __call__(self, x, mask=None, cache=None): qkv = self.Wqkv(x) queries, keys, values = mx.split(qkv, 3, axis=-1) # Extract some shapes num_heads = self.num_heads B, L, D = queries.shape # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries.astype(mx.float32) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) scores = (queries * scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask scores = mx.softmax(scores, axis=-1).astype(values.dtype) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.out_proj(values_hat), (keys, values) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.fc1 = nn.Linear(dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, dim) self.act = nn.GELU(approx="precise") def __call__(self, x) -> mx.array: return self.fc2(self.act(self.fc1(x))) class MOE(nn.Module): def __init__(self, args: ModelArgs, dim: int, hidden_dim: int): super().__init__() self.dim = dim self.hidden_dim = hidden_dim self.num_experts = args.num_local_experts self.num_experts_per_tok = args.num_experts_per_tok self.mlp = [MLP(self.dim, self.hidden_dim) for _ in range(self.num_experts)] self.gate = nn.Linear(args.model_dim, self.num_experts, bias=False) def __call__(self, x: mx.array) -> mx.array: ne = self.num_experts_per_tok orig_shape = x.shape x = x.reshape(-1, x.shape[-1]) gates = self.gate(x) inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne - 1, axis=-1))[:, :ne] scores = mx.softmax( mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32), axis=-1, ).astype(gates.dtype) if self.training: ys = [] y = mx.zeros((x.shape[0], ne, x.shape[-1]), x.dtype) for e, expert in enumerate(self.mlp): idx1, idx2 = map(mx.array, np.where(inds == e)) if idx1.size == 0: continue y[idx1, idx2] = expert(x[idx1]) y = (y * scores[..., None]).sum(axis=1) else: y = [] for xt, st, it in zip(x, scores, inds.tolist()): yt = mx.stack([self.mlp[e](xt) for e in it], axis=-1) yt = (yt * st).sum(axis=-1) y.append(yt[None, :]) y = mx.concatenate(y) return y.reshape(orig_shape) class ParallelBlock(nn.Module): def __init__(self, config: ModelArgs): super().__init__() dims = config.model_dim mlp_dims = dims * 4 self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim) self.ln = nn.LayerNorm(dims) self.moe = MOE(config, dims, mlp_dims) def __call__(self, x, mask, cache): h = self.ln(x) attn_h, cache = self.mixer(h, mask, cache) ff_h = self.moe(h) return attn_h + ff_h + x, cache class TransformerDecoder(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.embd = Embd(config) self.h = [ParallelBlock(config) for i in range(config.num_layers)] def __call__(self, x, mask, cache): x = self.embd(x) if cache is None: cache = [None] * len(self.h) for e, layer in enumerate(self.h): x, cache[e] = layer(x, mask, cache[e]) return x, cache class Embd(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.wte = nn.Embedding(config.num_vocab, config.model_dim) def __call__(self, x): return self.wte(x) class OutputHead(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.ln = nn.LayerNorm(config.model_dim) self.linear = nn.Linear(config.model_dim, config.num_vocab) def __call__(self, inputs): return self.linear(self.ln(inputs)) class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model_type = config.model_type self.transformer = TransformerDecoder(config) self.lm_head = OutputHead(config) def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> Tuple[mx.array, mx.array]: mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y, cache = self.transformer(x, mask, cache) return self.lm_head(y), cache @property def layers(self): return self.transformer.h