import argparse import math from dataclasses import dataclass import numpy as np import mlx.core as mx import mlx.nn as nn from mlx.utils import tree_flatten, tree_unflatten from transformers import AutoTokenizer @dataclass class ModelArgs: d_ff: int = 2048 d_kv: int = 64 d_model: int = 512 dropout_rate: int = 0.1 layer_norm_epsilon: float = 1e-06 n_positions: int = 512 relative_attention_num_buckets: int = 32 relative_attention_max_distance: int = 128 num_heads: int = 8 num_layers: int = 6 decoder_start_token_id: int = 0 eos_token_id: int = 1 pad_token_id: int = 0 vocab_size: int = 32128 def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from HF Tensorflow: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets relative_position = mx.abs(relative_position) else: relative_position = -mx.min(relative_position, mx.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( mx.log(relative_position.astype(mx.float32) / max_exact) / np.log(max_distance / max_exact) * (num_buckets - max_exact) ).astype(mx.int16) relative_position_if_large = mx.minimum( relative_position_if_large, num_buckets - 1 ) relative_buckets += mx.where(is_small, relative_position, relative_position_if_large) return relative_buckets class RelativePositionBias(nn.Module): def __init__(self, config: ModelArgs, is_decoder: bool = False): self.bidirectional = not is_decoder self.num_buckets = config.relative_attention_num_buckets self.max_distance = config.relative_attention_max_distance self.n_heads = config.num_heads self.embeddings = nn.Embedding( config.relative_attention_num_buckets, config.num_heads) def __call__(self, query_length, key_length): """Compute binned relative position bias""" context_position = mx.arange(query_length, dtype=mx.int32)[:, None] memory_position = mx.arange(key_length, dtype=mx.int32)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = _relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=self.bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance, ) values = self.embeddings(relative_position_bucket) # shape (query_length, key_length, num_heads) values = mx.expand_dims(values.transpose(2, 0, 1), 0) # shape (1, num_heads, query_length, key_length) return values class MultiHeadAttention(nn.Module): def __init__(self, config: ModelArgs, has_relative_attention_bias: bool = False): super().__init__() self.num_heads = config.num_heads self.query_proj = nn.Linear(config.d_model, config.d_model, bias=False) self.key_proj = nn.Linear(config.d_model, config.d_model, bias=False) self.value_proj = nn.Linear(config.d_model, config.d_model, bias=False) self.out_proj = nn.Linear(config.d_model, config.d_model, bias=False) self.has_relative_attention_bias = has_relative_attention_bias if has_relative_attention_bias: self.relative_attention_bias = RelativePositionBias(config) def __call__(self, queries, keys, values, mask=None): queries = self.query_proj(queries) keys = self.key_proj(keys) values = self.value_proj(values) num_heads = self.num_heads B, L, D = queries.shape _, S, _ = keys.shape queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1) values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3) # Dimensions are [batch x num heads x sequence x hidden dim] scores = queries @ keys if mask is not None: scores = scores + mask.astype(scores.dtype) if self.has_relative_attention_bias: position_bias = self.relative_attention_bias(L, S) scores += position_bias scores = mx.softmax(scores, axis=-1) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.out_proj(values_hat) @staticmethod def create_additive_causal_mask(N: int, dtype: mx.Dtype = mx.float32): indices = mx.arange(N) mask = indices[:, None] < indices[None] # usually inf but 1e9 is as good and softmax(full(1e9)) != nan # TODO: Should replace this with finfo(dtype).min mask = mask.astype(dtype) * -1e9 return mask class LayerNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5, affine: bool = True): super().__init__() if affine: self.weight = mx.ones((dims,)) self.eps = eps self.dims = dims def _extra_repr(self): return f"{self.dims}, eps={self.eps}, affine={'weight' in self}" def __call__(self, x): means = mx.mean(x, axis=-1, keepdims=True) var = mx.var(x, axis=-1, keepdims=True) x = (x - means) * mx.rsqrt(var + self.eps) return (self.weight * x) if "weight" in self else x class TransformerEncoderLayer(nn.Module): def __init__(self, config: ModelArgs, has_relative_attention_bias: bool = False): super().__init__() mlp_dims = config.d_ff or config.d_model * 4 self.attention = MultiHeadAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.ln1 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.ln2 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.linear1 = nn.Linear(config.d_model, mlp_dims, bias=False) self.linear2 = nn.Linear(mlp_dims, config.d_model, bias=False) def __call__(self, x, mask): y = self.ln1(x) y = self.attention(y, y, y, mask) x = x + y y = self.ln2(x) y = self.linear1(y) y = mx.maximum(y, 0) y = self.linear2(y) x = x + y return x class TransformerEncoder(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.layers = [ TransformerEncoderLayer(config, has_relative_attention_bias=i == 0) for i in range(config.num_layers) ] self.ln = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def __call__(self, x, mask): for layer in self.layers: x = layer(x, mask) x = self.ln(x) return x class TransformerDecoderLayer(nn.Module): def __init__(self, config: ModelArgs, has_relative_attention_bias: bool = False): super().__init__() mlp_dims = config.d_ff or config.d_model * 4 self.self_attention = MultiHeadAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.cross_attention = MultiHeadAttention(config) self.ln1 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.ln2 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.ln3 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.linear1 = nn.Linear(config.d_model, mlp_dims, bias=False) self.linear2 = nn.Linear(mlp_dims, config.d_model, bias=False) def __call__(self, x, memory, x_mask, memory_mask): y = self.ln1(x) y = self.self_attention(y, y, y, x_mask) x = x + y y = self.ln2(x) y = self.cross_attention(x, memory, memory, memory_mask) x = x + y y = self.ln3(x) y = self.linear1(y) y = mx.maximum(y, 0) y = self.linear2(y) x = x + y return x class TransformerDecoder(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.layers = [ TransformerDecoderLayer(config, has_relative_attention_bias=i == 0) for i in range(config.num_layers) ] self.ln = LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def __call__(self, x, memory, x_mask, memory_mask): for layer in self.layers: x = layer(x, memory, x_mask, memory_mask) x = self.ln(x) return x class T5(nn.Module): def __init__(self, config: ModelArgs): self.wte = nn.Embedding(config.vocab_size, config.d_model) self.encoder = TransformerEncoder(config) self.decoder = TransformerDecoder(config) # self.lm_head = OutputHead(config) def __call__( self, inputs: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> tuple[mx.array, mx.array]: x = self.wte(inputs) y = self.encoder(x, mask=None) #, cache) mask = None if x.shape[1] > 1: mask = MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) # y, cache = self.decoder(x, mask, cache) # return self.lm_head(y), cache return y #, cache # def generate(prompt: mx.array, model: T5, temp: Optional[float] = 0.0): # def sample(logits): # if temp == 0: # return mx.argmax(logits, axis=-1) # else: # return mx.random.categorical(logits * (1 / temp)) # logits, cache = model(prompt) # y = sample(logits[:, -1, :]) # yield y # while True: # logits, cache = model(y[:, None], cache=cache) # y = sample(logits.squeeze(1)) # yield y def load_model(): model = T5(ModelArgs()) weights = mx.load("weights.npz") current_weights = tree_flatten(model.parameters()) weights_to_load = list(weights.items()) current_weights_dict = dict(current_weights) current_weights_keys = set(current_weights_dict.keys()) weights_to_load_dict = dict(weights_to_load) weights_to_load_keys = set(weights_to_load_dict.keys()) print("Missing weights: ", sorted(current_weights_keys - weights_to_load_keys)) print() print("Weights ignored: ", sorted(weights_to_load_keys - current_weights_keys)) for key in current_weights_keys & weights_to_load_keys: if weights_to_load_dict[key].shape != current_weights_dict[key].shape: print("Shape mismatch for key: ", key) print("Expected shape: ", current_weights_dict[key].shape) print("Loading shape: ", weights_to_load_dict[key].shape) model.update(tree_unflatten(weights_to_load)) tokenizer = AutoTokenizer.from_pretrained("t5-small", trust_remote_code=True) return model, tokenizer if __name__ == "__main__": parser = argparse.ArgumentParser(description="T5 Inference script") parser.add_argument( "--prompt", help="", default="translate English to German: That is good.", ) parser.add_argument( "--max_tokens", "-m", type=int, default=100, help="Maximum number of tokens to generate", ) parser.add_argument( "--temp", help="The sampling temperature.", type=float, default=0.0, ) parser.add_argument("--seed", type=int, default=0, help="The PRNG seed") args = parser.parse_args() mx.random.seed(args.seed) model, tokenizer = load_model() prompt = tokenizer( args.prompt, return_tensors="np", return_attention_mask=False, )["input_ids"] prompt = mx.array(prompt) print("[INFO] Generating with T5...", flush=True) print(args.prompt, end="", flush=True) print(model(prompt)) # tokens = [] # for token, _ in zip(generate(prompt, model), range(args.max_tokens)): # tokens.append(token) # if (len(tokens) % 10) == 0: # mx.eval(tokens) # s = tokenizer.decode([t.item() for t in tokens]) # print(s, end="", flush=True) # tokens = [] # mx.eval(tokens) # s = tokenizer.decode([t.item() for t in tokens]) # print(s, flush=True)