# Copyright © 2023-2024 Apple Inc. import math from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention from .switch_layers import SwitchGLU @dataclass class ModelArgs(BaseModelArgs): model_type: str vocab_size: int hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int num_key_value_heads: int attention_bias: bool moe_topk: int num_experts: int num_shared_expert: int use_mixed_mlp_moe: bool use_qk_norm: bool rms_norm_eps: float rope_theta: float use_cla: bool cla_share_factor: 2 rope_scaling: Optional[Dict[str, Union[float, str]]] = None tie_word_embeddings: bool = False def __post_init__(self): if self.rope_scaling: required_keys = {"factor", "type"} if not all(key in self.rope_scaling for key in required_keys): raise ValueError(f"rope_scaling must contain keys {required_keys}") class DynamicNTKAlphaRoPE(nn.Module): def __init__( self, dims: int, base: float = 10000, scaling_alpha: float = 1.0, ): super().__init__() self.dims = dims base = base * scaling_alpha ** (dims / (dims - 2)) self._freqs = base ** (mx.arange(0, self.dims, 2) / self.dims) def __call__(self, x, offset: int = 0): return mx.fast.rope( x, self.dims, traditional=False, base=None, scale=1.0, offset=offset, freqs=self._freqs, ) class Attention(nn.Module): def __init__(self, kv_proj: bool, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads assert args.num_key_value_heads is not None self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias) if kv_proj: self.k_proj = nn.Linear( dim, n_kv_heads * head_dim, bias=args.attention_bias ) self.v_proj = nn.Linear( dim, n_kv_heads * head_dim, bias=args.attention_bias ) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias) self.use_qk_norm = args.use_qk_norm if self.use_qk_norm: self.query_layernorm = nn.RMSNorm(head_dim, args.rms_norm_eps) self.key_layernorm = nn.RMSNorm(head_dim, args.rms_norm_eps) self.rope = DynamicNTKAlphaRoPE( head_dim, base=args.rope_theta, scaling_alpha=args.rope_scaling["alpha"], ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, kv_states=None, ) -> mx.array: B, L, D = x.shape queries = self.q_proj(x) if kv_states is None: keys, values = self.k_proj(x), self.v_proj(x) kv_states = keys, values else: keys, values = kv_states # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) offset = cache.offset if cache else 0 queries = self.rope(queries, offset=offset) keys = self.rope(keys, offset=offset) if self.use_qk_norm: queries = self.query_layernorm(queries) keys = self.key_layernorm(keys) if cache is not None: keys, values = cache.update_and_fetch(keys, values) output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output), kv_states class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class Gate(nn.Module): def __init__(self, dim, num_experts): super().__init__() self.wg = nn.Linear(dim, num_experts, bias=False) def __call__(self, x) -> mx.array: return self.wg(x) class MoeBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size intermediate_size = args.intermediate_size self.use_shared_mlp = args.use_mixed_mlp_moe if args.use_mixed_mlp_moe: self.shared_mlp = MLP(dim, intermediate_size * args.num_shared_expert) self.num_experts = num_experts = args.num_experts self.top_k = args.moe_topk self.gate = Gate(dim, num_experts) self.switch_mlp = SwitchGLU(dim, intermediate_size, num_experts) def __call__( self, x: mx.array, ): gates = self.gate(x) gates = mx.softmax(gates, axis=-1, precise=True) k = self.top_k inds = mx.stop_gradient(mx.argpartition(-gates, kth=k - 1, axis=-1)[..., :k]) scores = mx.take_along_axis(gates, inds, axis=-1) y = self.switch_mlp(x, inds) y = (y * scores[..., None]).sum(axis=-2) if self.use_shared_mlp: shared_expert_output = self.shared_mlp(x) y = y + shared_expert_output return y class DecoderLayer(nn.Module): def __init__(self, args: ModelArgs, kv_proj: bool): super().__init__() self.hidden_size = args.hidden_size self.self_attn = Attention(kv_proj, args) self.mlp = MoeBlock(args) self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, shared_kv_states: Optional[Tuple[mx.array, mx.array]] = None, ): r, shared_kv_states = self.self_attn( self.input_layernorm(x), mask, cache, shared_kv_states ) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out, shared_kv_states class HunYuanModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ DecoderLayer(args=args, kv_proj=(i % args.cla_share_factor) == 0) for i in range(args.num_hidden_layers) ] self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ): h = self.embed_tokens(inputs) if mask is None: mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.layers) for i, (layer, c) in enumerate(zip(self.layers, cache)): if i % self.args.cla_share_factor == 0: shared_kv_states = None h, shared_kv_states = layer(h, mask, c, shared_kv_states) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = HunYuanModel(args) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ): out = self.model(inputs, mask, cache) return self.model.embed_tokens.as_linear(out) def sanitize(self, weights): if "model.layers.0.mlp.experts.0.up_proj.weight" not in weights: return weights for l in range(self.args.num_hidden_layers): prefix = f"model.layers.{l}" for n in ["up_proj", "down_proj", "gate_proj"]: for k in ["weight", "scales", "biases"]: if f"{prefix}.mlp.experts.0.{n}.{k}" in weights: to_join = [ weights.pop(f"{prefix}.mlp.experts.{e}.{n}.{k}") for e in range(self.args.num_experts) ] weights[f"{prefix}.mlp.switch_mlp.{n}.{k}"] = mx.stack(to_join) return weights @property def layers(self): return self.model.layers