import enum import math from collections import OrderedDict from dataclasses import dataclass from typing import Any, Literal, NamedTuple, Optional, Union import mlx.core as mx import mlx.nn as nn from mlx_lm.models.base import BaseModelArgs, create_attention_mask def _is_first_token(mask: mx.array) -> mx.array: assert mask.dtype == mx.bool_ # type: ignore B, Nh, q_len, kv_len = mask.shape mask = mask[:, :, :, -q_len:] cont = q_len != kv_len v = False if cont else True out = mx.logical_not(mx.diagonal(mask, offset=-1, axis1=-2, axis2=-1).astype(mx.bool_)) # type: ignore out = mx.concatenate([mx.full(shape=(B, Nh, 1), dtype=mx.bool_, vals=v), out], axis=-1) # type: ignore return out def _swiglu(h: mx.array) -> mx.array: size = h.shape[-1] chunks = 2 _current_idx = 0 split_sizes = [] for i in range(chunks - 1): _current_idx += size // chunks + (1 if i < size % chunks else 0) split_sizes.append(_current_idx) hs = mx.split(h, split_sizes, axis=-1) return nn.silu(hs[0]) * hs[1] class RotaryEmbedding(nn.Module): def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000) -> None: super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)) self._inv_freq = inv_freq # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache(seq_len=max_position_embeddings, dtype=mx.float32) def _set_cos_sin_cache(self, seq_len: int, dtype: Any) -> None: self.max_seq_len_cached = seq_len t = mx.arange(self.max_seq_len_cached, dtype=self._inv_freq.dtype) # type: ignore freqs = mx.einsum("i,j->ij", t, self._inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = mx.concatenate([freqs, freqs], axis=-1) self._cos_cached = emb.cos()[None, None, :, :].astype(mx.float32) self._sin_cached = emb.sin()[None, None, :, :].astype(mx.float32) def __call__(self, x: mx.array, seq_len: int) -> tuple[mx.array, mx.array]: # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype) return ( self._cos_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore self._sin_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore ) def _rotate_half(x: mx.array) -> mx.array: """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return mx.concatenate([-x2, x1], axis=-1) def _rotary_pos_emb(x: mx.array, cos: mx.array, sin: mx.array, position_ids: mx.array) -> mx.array: # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = mx.expand_dims(cos[position_ids], 1) # [bs, 1, seq_len, dim] sin = mx.expand_dims(sin[position_ids], 1) # [bs, 1, seq_len, dim] x_embed = (x * cos) + (_rotate_half(x) * sin) return x_embed class LinearType(str, enum.Enum): Normal = "normal" Fp8 = "fp8" Fp8Retain = "fp8-retain" @dataclass class ModelArgs(BaseModelArgs): # type: ignore model_type: str = "plamo2" def __init__( self, hidden_size: int = 4096, num_hidden_layers: int = 32, rms_norm_eps: float = 1e-6, tie_word_embeddings: bool = True, # Attention num_attention_heads: int = 32, num_key_value_heads: int = 4, hidden_size_per_head: int = 128, max_position_embeddings: int = 2048, attention_window_size: int = 2048, full_attention_idx: list[int] | None = None, # Mamba mamba_d_state: int = 64, mamba_d_conv: int = 4, mamba_num_heads: int = 64, mamba_step: int = 2, mamba_chunk_size: int = 256, mamba_enabled: bool = True, # MLP intermediate_size: int = 13312, # Tokenizer vocab_size: int = 32000, tokenizer_class: str = "PlamoTokenizer", pad_token_id: Optional[int] = None, bos_token_id: int = 1, eos_token_id: int = 2, # Multimodal image_token_id: Optional[int] = None, image_feature_size: Optional[int] = None, image_proj_type: Literal["linear", "mlp"] = "linear", # FP8 linear_type: LinearType = LinearType.Normal, fp8_accum_dtype: Optional[str] = None, # Evaluation eval_attention_n_bit: Optional[int] = None, eval_mlp_n_bit: Optional[int] = None, use_cache: bool = True, **kwargs: Any, ) -> None: # max_position_embeddings is often used to determine the max length during inference, # but samba should have extrapolation abilities self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings) self.hidden_size = hidden_size self.rms_norm_eps = rms_norm_eps self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_size_per_head = hidden_size_per_head self.num_key_value_heads = num_key_value_heads self.attention_window_size = attention_window_size self.full_attention_idx = full_attention_idx if full_attention_idx is not None else [] self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_num_heads = mamba_num_heads self.mamba_step = mamba_step self.mamba_chunk_size = mamba_chunk_size self.mamba_enabled = mamba_enabled self.intermediate_size = intermediate_size self.vocab_size = vocab_size self.image_token_id = image_token_id self.image_feature_size = image_feature_size self.image_proj_type = image_proj_type self.linear_type = linear_type self.fp8_accum_dtype = fp8_accum_dtype self.eval_attention_n_bit = eval_attention_n_bit self.eval_mlp_n_bit = eval_mlp_n_bit self.use_cache = use_cache # fields for vLLM self.sliding_window = attention_window_size self.tokenizer_class = tokenizer_class self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.tie_word_embeddings = tie_word_embeddings # From PretrainedConfig of transformers self.use_return_dict = kwargs.pop("use_return_dict", True) self.output_attentions = kwargs.pop("output_attentions", False) self.output_hidden_states = kwargs.pop("output_hidden_states", False) class PlamoAttentionCache(nn.Module): def __init__(self, key: mx.array, value: mx.array) -> None: super().__init__() B, nh, L, c = key.shape assert len(value.shape) == 4 assert value.shape[0] == B assert value.shape[2] == L self.key = key self.value = value class PlamoMambaCache(nn.Module): def __init__(self, conv_state: mx.array, ssm_state: mx.array) -> None: super().__init__() # conv_state: [B, C, d_conv] # ssm_state: [B, nhead, nchanel_per_head, d_state] assert len(conv_state.shape) == 3 assert len(ssm_state.shape) == 4 assert conv_state.shape[0] == ssm_state.shape[0] self.conv_state = conv_state self.ssm_state = ssm_state PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache class PlamoCache(nn.Module): """ stores states of the model for fast decoding. `transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use other architectures (e.g., Mamba). This class provides a similar interface to `transformers.Cache`, but is designed to also handle the state of Mamba properly. """ def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.cache: list[Optional[PlamoLayerCache]] = [None for _ in range(config.num_hidden_layers)] def append_kv(self, key: mx.array, value: mx.array, layer_idx: int) -> tuple[mx.array, mx.array]: c = self.cache[layer_idx] if c is None: return key, value assert isinstance(c, PlamoAttentionCache) def _validate(cache: mx.array, new_tensor: mx.array) -> None: assert len(cache.shape) == 4 assert len(new_tensor.shape) == 4 assert cache.shape[0] == new_tensor.shape[0] assert cache.shape[1] == new_tensor.shape[1] assert cache.shape[3] == new_tensor.shape[3] _validate(c.key, key) _validate(c.value, value) assert key.shape[2] == value.shape[2] return mx.concatenate([c.key, key], axis=2), mx.concatenate([c.value, value], axis=2) def update_attention(self, key_states: mx.array, value_states: mx.array, layer_idx: int) -> PlamoAttentionCache: full_attn = layer_idx in self.config.full_attention_idx window_size = self.config.attention_window_size if self.cache[layer_idx] is None: if full_attn: self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states) else: self.cache[layer_idx] = PlamoAttentionCache( key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :], ) else: c = self.cache[layer_idx] assert isinstance(c, PlamoAttentionCache) k, v = self.append_kv(key_states, value_states, layer_idx) if full_attn: c.key = k c.value = v else: c.key = k[:, :, -window_size:, :] c.value = v[:, :, -window_size:, :] self.cache[layer_idx] = c return self.cache[layer_idx] # type: ignore def update_mamba(self, conv_state: mx.array, ssm_state: mx.array, layer_idx: int) -> PlamoMambaCache: if self.cache[layer_idx] is None: self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state) else: c = self.cache[layer_idx] assert isinstance(c, PlamoMambaCache) assert c.conv_state.shape == conv_state.shape assert c.ssm_state.shape == ssm_state.shape c.conv_state = conv_state c.ssm_state = ssm_state return self.cache[layer_idx] # type: ignore def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None: assert layer_idx < len(self.cache) layer_cache = self.cache[layer_idx] return layer_cache # type: ignore @property def state(self): return self.cache @state.setter def state(self, v): self.cache = v def __len__(self) -> int: return len(self.cache) def get_seq_length(self, layer_idx: Optional[int] = None) -> int: if layer_idx is not None: c = self.cache[layer_idx] assert isinstance(c, PlamoAttentionCache) return c.key.shape[2] # type: ignore sequence_length: int = 0 for layer_cache in self.cache: if isinstance(layer_cache, PlamoAttentionCache): sequence_length = ( max(layer_cache.key.shape[2], sequence_length) if sequence_length is not None else layer_cache.key.shape[2] ) return sequence_length def get_max_length(self) -> int | None: return None def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int: """Given the sequence length of the new inputs, returns the usable length of the cache.""" # Cache without size limit -> all cache is usable # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache # length, we will need to evict part of the cache (and thus not all cache is usable) max_length = self.get_max_length() previous_seq_length = self.get_seq_length(layer_idx) if max_length is not None and previous_seq_length + new_seq_length > max_length: return max_length - new_seq_length return previous_seq_length def reorder_cache(self, beam_idx: mx.array) -> None: def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache: return PlamoMambaCache( conv_state=mx.take(cache.conv_state, beam_idx, axis=0), ssm_state=mx.take(cache.ssm_state, beam_idx, axis=0), ) def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache: return PlamoAttentionCache( key=mx.take(cache.key, beam_idx, axis=0), value=mx.take(cache.value, beam_idx, axis=0), ) for i in range(len(self.cache)): if self.cache[i] is None: continue layer_cache = self.cache[i] if isinstance(layer_cache, PlamoMambaCache): self.cache[i] = _mamba(layer_cache) else: assert isinstance(layer_cache, PlamoAttentionCache) self.cache[i] = _attention(layer_cache) @property def seen_tokens(self) -> int | None: return None class DecoderInput(NamedTuple): hidden_states: mx.array attention_mask: Optional[mx.array] = None past_states: Optional[PlamoCache] = None output_hidden_states: Optional[bool] = False output_attentions: Optional[bool] = False gradient_checkpointing: bool = False input_ids: Optional[mx.array] = None class DecoderOutput(NamedTuple): hidden_states: mx.array all_hidden_states: Optional[tuple[mx.array, ...]] all_self_attns: Optional[tuple[mx.array, ...]] # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tuple[int, int], dtype: mx.Dtype, past_key_values_length: int = 0) -> mx.array: """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = mx.full((tgt_len, tgt_len), float("-inf")) mask_cond = mx.arange(mask.shape[-1]) mask = mx.where(mask_cond < (mask_cond + 1).reshape((mask.shape[-1], 1)), 0, mask) mask = mask.astype(dtype) if past_key_values_length > 0: mask = mx.concatenate([mx.zeros((tgt_len, past_key_values_length), dtype=dtype), mask], axis=-1) return mx.broadcast_to(mask[None, None, :, :], (bsz, 1, tgt_len, tgt_len + past_key_values_length)) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: mx.array, dtype: mx.Dtype, tgt_len: Optional[int] = None) -> mx.array: """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.shape tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mx.broadcast_to(mask[:, None, None, :], (bsz, 1, tgt_len, src_len)).astype(dtype) inverted_mask = 1.0 - expanded_mask return mx.where(inverted_mask.astype(mx.bool_), float("-inf"), inverted_mask) # type: ignore def _rms_norm(hidden_states: mx.array, weight: Optional[mx.array], eps: float, offset: float = 1.0) -> mx.array: input_dtype = hidden_states.dtype hidden_states = hidden_states.astype(mx.float32) variance = mx.power(hidden_states, 2).mean(-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + eps) hidden_states = hidden_states.astype(input_dtype) if weight is not None: hidden_states = (offset + weight) * hidden_states return hidden_states class RMSNorm(nn.Module): def __init__( self, hidden_size: int, eps: float = 1e-6, offset: float = 1.0, ) -> None: super().__init__() self.weight = mx.zeros(hidden_size) self.variance_epsilon = eps self.offset = offset def __call__(self, hidden_states: mx.array) -> mx.array: return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset) def get_initial_dt_bias(num_heads: int) -> mx.array: dt_min = 0.001 dt_max = 0.1 dt = mx.exp(mx.random.uniform(shape=(num_heads,)) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min)) dt = mx.clip(dt, a_min=1e-4, a_max=None) inv_dt = dt + mx.log(-mx.expm1(-dt)) return inv_dt def get_initial_A(num_heads: int) -> mx.array: A = mx.arange(1, num_heads + 1, dtype=mx.float32) return mx.log(A) # From: https://github.com/state-spaces/mamba/blob/0cce0fa645f100f00620ddf2333c2b7712abfdec/mamba_ssm/ops/triton/selective_state_update.py#L219 def selective_state_update_ref( state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False ) -> tuple[mx.array, mx.array]: """ Argument: state: (batch, dim, dstate) or (batch, nheads, dim, dstate) x: (batch, dim) or (batch, nheads, dim) dt: (batch, dim) or (batch, nheads, dim) A: (dim, dstate) or (nheads, dim, dstate) B: (batch, dstate) or (batch, ngroups, dstate) C: (batch, dstate) or (batch, ngroups, dstate) D: (dim,) or (nheads, dim) z: (batch, dim) or (batch, nheads, dim) dt_bias: (dim,) or (nheads, dim) Return: out: (batch, dim) or (batch, nheads, dim) """ has_heads = state.ndim > 3 if state.ndim == 3: state = mx.expand_dims(state, 1) if x.ndim == 2: x = mx.expand_dims(x, 1) if dt.ndim == 2: dt = mx.expand_dims(dt, 1) if A.ndim == 2: A = mx.expand_dims(A, 0) if B.ndim == 2: B = mx.expand_dims(B, 1) if C.ndim == 2: C = mx.expand_dims(C, 1) if D is not None and D.ndim == 1: D = mx.expand_dims(D, 0) if z is not None and z.ndim == 2: z = mx.expand_dims(z, 1) if dt_bias is not None and dt_bias.ndim == 1: dt_bias = mx.expand_dims(dt_bias, 0) batch, nheads, dim, dstate = state.shape assert x.shape == (batch, nheads, dim) assert dt.shape == x.shape assert A.shape == (nheads, dim, dstate) ngroups = B.shape[1] assert nheads % ngroups == 0, "nheads must be divisible by ngroups" assert B.shape == (batch, ngroups, dstate) assert C.shape == B.shape if D is not None: assert D.shape == (nheads, dim) if z is not None: assert z.shape == x.shape if dt_bias is not None: assert dt_bias.shape == (nheads, dim) dt = dt + dt_bias dt = nn.softplus(dt) if dt_softplus else dt dA = mx.exp(mx.expand_dims(dt, axis=-1) * A) # (batch, nheads, dim, dstate) B = mx.reshape( mx.tile(mx.expand_dims(B, axis=2), (1, 1, nheads // ngroups, 1)), (batch, nheads, dstate), ) # (batch, nheads, dstate) C = mx.reshape( mx.tile(mx.expand_dims(C, axis=2), (1, 1, nheads // ngroups, 1)), (batch, nheads, dstate), ) # (batch, nheads, dstate) dB = mx.expand_dims(dt, axis=-1) * mx.expand_dims(B, axis=-2) # (batch, nheads, dim, dstate) state = state * dA + dB * mx.expand_dims(x, axis=-1) # (batch, dim, dstate out = mx.einsum("bhdn,bhn->bhd", state.astype(C.dtype), C) if D is not None: out += (x * D).astype(out.dtype) out = (out if z is None else out * nn.silu(z)).astype(x.dtype) if not has_heads: out = out.squeeze(1) return out, state def ssd_update_state( ssm_state: mx.array, x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, D: mx.array, z: mx.array, dt_bias: mx.array, dt_softplus: bool, ) -> tuple[mx.array, mx.array]: assert ssm_state.dtype == mx.float32 dtype = x.dtype hidden_size_per_head = x.shape[-1] d_state = B.shape[-1] A = mx.broadcast_to(A[:, None, None], (A.shape[0], hidden_size_per_head, d_state)).astype(mx.float32) dt = mx.broadcast_to(dt[..., None], (dt.shape[0], dt.shape[1], hidden_size_per_head)) dt_bias = mx.broadcast_to(dt_bias[:, None], (dt_bias.shape[0], hidden_size_per_head)) D = mx.broadcast_to(D[:, None], (D.shape[0], hidden_size_per_head)) out, ssm_state = selective_state_update_ref( ssm_state, x.astype(dtype), dt.astype(dtype), A.astype(mx.float32), B.astype(dtype), C.astype(dtype), D.astype(mx.float32), z.astype(dtype), dt_bias.astype(mx.float32), dt_softplus=dt_softplus, ) return out[:, None], ssm_state def _ssd_chunk_scan_combined_naive( x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, D: mx.array, z: mx.array, dt_bias: mx.array, dt_softplus: bool, seq_idx: mx.array | None, ssm_state: mx.array, ) -> tuple[mx.array, mx.array]: assert ssm_state.dtype == mx.float32 length = x.shape[1] ys = [] for i in range(length): if i != 0 and seq_idx is not None: ssm_state = mx.where( mx.array(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None], mx.zeros_like(ssm_state), ssm_state, ) y, ssm_state = ssd_update_state( ssm_state, x[:, i], dt[:, i], A, B[:, i], C[:, i], D if D.ndim == 1 else D[:, i], z=z[:, i], dt_bias=dt_bias, dt_softplus=dt_softplus, ) ys.append(y) return mx.concatenate(ys, axis=1), ssm_state def ssd_chunk_scan_combined( x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, chunk_size: int, D: mx.array, z: mx.array, dt_bias: mx.array, dt_softplus: bool, return_final_states: bool, seq_idx: mx.array | None, ssm_state: mx.array | None, ) -> tuple[mx.array, mx.array] | mx.array: if seq_idx is not None: assert seq_idx.dtype == mx.int32 assert ssm_state is None assert not return_final_states if ssm_state is not None: assert ssm_state.dtype == mx.float32 assert seq_idx is None """ state will be updates by following: ``` dt = softplus(dt) dA = exp(dt * A) state_next = state * dA + dB * x ``` To avoid updating state, we set dt to -inf and x to 0 because `softplus(-inf) = 0` and `exp(0) = 1` """ if ssm_state is None: bsize, _, num_heads, channel = x.shape state = B.shape[-1] ssm_state = mx.zeros((bsize, num_heads, channel, state), dtype=mx.float32) tmp, ssm_state = _ssd_chunk_scan_combined_naive( x, dt, A, B, C, D, z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, seq_idx=seq_idx, ssm_state=ssm_state, ) if return_final_states: return tmp, ssm_state else: return tmp def _causal_conv1d( conv_state: mx.array | None, weight: mx.array, x: mx.array, seq_idx: mx.array | None ) -> tuple[mx.array, mx.array | None]: dtype = x.dtype if conv_state is not None: dtype = conv_state.dtype assert seq_idx is None if seq_idx is not None: assert seq_idx.dtype == mx.int32 assert conv_state is None weight = weight.astype(dtype) x = x.astype(dtype) return_final_states = conv_state is not None if conv_state is None: bsize = x.shape[0] dim = weight.shape[0] d_conv = weight.shape[-1] conv_state = mx.zeros((bsize, dim, d_conv - 1), dtype=x.dtype) length = x.shape[-1] out = mx.zeros_like(x) for i in range(length): if i != 0 and seq_idx is not None: conv_state = mx.where( seq_idx[:, i - 1][:, None, None] != seq_idx[:, i][:, None, None], mx.zeros_like(conv_state), conv_state, ) out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1]) x = out if return_final_states: return x, conv_state else: return x, None # From: https://github.com/Dao-AILab/causal-conv1d/blob/82867a9d2e6907cc0f637ac6aff318f696838548/causal_conv1d/causal_conv1d_interface.py#L206 def causal_conv1d_update(x, conv_state, weight, bias=None, activation=None) -> tuple[mx.array, mx.array]: """ x: (batch, dim) or (batch, dim, seqlen) conv_state: (batch, dim, state_len), where state_len >= width - 1 weight: (dim, width) bias: (dim,) out: (batch, dim) or (batch, dim, seqlen) """ if activation not in [None, "silu", "swish"]: raise NotImplementedError("activation must be None, silu, or swish") dtype_in = x.dtype unsqueeze = x.ndim == 2 if unsqueeze: x = x.unsqueeze(-1) batch, dim, seqlen = x.shape width = weight.shape[1] state_len = conv_state.shape[-1] assert conv_state.shape == (batch, dim, state_len) assert weight.shape == (dim, width) x_new = mx.concatenate([conv_state, x], axis=-1).astype(weight.dtype) # (batch, dim, state_len + seqlen) conv_state = x_new[:, :, -state_len:] assert bias is None # x_new: (N, C, L) -> (N, L, C) out = mx.conv1d( x_new.transpose(0, 2, 1), mx.expand_dims(weight, axis=2), padding=0, groups=dim, ).transpose(0, 2, 1)[:, :, -seqlen:] if unsqueeze: out = out.squeeze(-1) return (out if activation is None else nn.silu(out)).astype(dtype_in), conv_state def _causal_conv1d_update(conv_state: mx.array, weight: mx.array, xBC: mx.array) -> tuple[mx.array, mx.array]: dtype = conv_state.dtype xBC = xBC.astype(dtype) weight = weight.astype(dtype) x, conv_state = causal_conv1d_update( x=xBC, conv_state=conv_state, weight=weight[:, :, 0], activation="silu", ) return x, conv_state # Based on: https://github.com/Dao-AILab/causal-conv1d/blob/82867a9d2e6907cc0f637ac6aff318f696838548/causal_conv1d/causal_conv1d_interface.py#L206 def causal_conv1d(x, weight, bias=None, activation=None): """ MLX implementation of a causal depthwise 1D convolution. Args: x (mx.array): Input tensor of shape (batch, channels, seq_len). weight (mx.array): Convolution filters of shape (channels, kernel_width). Each channel has its own filter (depthwise conv). bias (mx.array, optional): Bias for each channel of shape (channels,). activation (str, optional): Activation to apply ("silu" or "swish" supported). Returns: mx.array: Output tensor of shape (batch, channels, seq_len). """ x = mx.array(x) if not isinstance(x, mx.array) else x weight = mx.array(weight) if not isinstance(weight, mx.array) else weight if bias is not None: bias = mx.array(bias) if not isinstance(bias, mx.array) else bias batch, channels, seq_len = x.shape _, kernel_width = weight.shape # weight shape: (channels, kernel_width) # Reshape weight for depthwise conv: (out_channels, in_channels/groups, kernel_width) # Here out_channels = channels, in_channels/groups = 1 (depthwise conv per channel) w = weight.reshape((channels, 1, kernel_width)) # Pad input on the left with (kernel_width-1) zeros for causal convolution if kernel_width > 1: pad_shape = (batch, channels, kernel_width - 1) pad_zeros = mx.zeros(pad_shape, dtype=x.dtype) x_padded = mx.concatenate([pad_zeros, x], axis=2) # concat along time axis else: x_padded = x # Perform depthwise convolution. Padding is already applied manually, so use padding=0 in conv1d. y = mx.conv1d(x_padded, w, stride=1, padding=0, groups=channels) # After convolution, y shape = (batch, channels, seq_len) because: # input length = seq_len + kernel_width - 1, no padding in conv, so output length = seq_len. # Add bias if provided (bias shape (channels,) broadcasts to (batch, channels, seq_len)) if bias is not None: y = y + bias.reshape((1, channels, 1)) # Apply activation if specified if activation in ("silu", "swish"): # SiLU (swish) activation: y * sigmoid(y) y = y * mx.sigmoid(y) elif activation is not None: raise ValueError(f"Unsupported activation: {activation}") return y class Mamba(nn.Module): def __init__(self, config: ModelArgs, layer_idx: int) -> None: super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.d_state = config.mamba_d_state self.d_conv = config.mamba_d_conv self.chunk_size = config.mamba_chunk_size self.num_heads = config.mamba_num_heads # TODO add mamba_hidden_size_per_head config (?) self.hidden_size_per_head = config.hidden_size_per_head self.intermediate_size = self.num_heads * self.hidden_size_per_head self.in_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False) self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=False, # TODO the original implementation uses bias kernel_size=self.d_conv, groups=self.intermediate_size, padding=0, ) self.dt_dim = max(64, self.hidden_size // 16) # Notes: # Mamba2 removes this linear projection for simplicity (Figure 6 in the paper), # but it may degrade the ability of content-length extrapolation. self.bcdt_proj = nn.Linear( self.intermediate_size, self.dt_dim + 2 * self.d_state, bias=False, ) self.dt_proj = nn.Linear(self.dt_dim, self.num_heads, bias=False) self.dt_bias = get_initial_dt_bias(self.num_heads) self.A_log = get_initial_A(self.num_heads) self.D = mx.ones(self.num_heads, dtype=mx.float32) # TODO norm weight before gating like Mamba2 self.dt_norm_weight = mx.ones(self.dt_dim) self.B_norm_weight = mx.ones(self.d_state) self.C_norm_weight = mx.ones(self.d_state) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) def _no_weight_decay_param_names(self) -> set[str]: return set(["D", "dt_bias", "A_log"]) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, past_states: Optional[PlamoCache] = None, ) -> tuple[mx.array, Optional[PlamoCache]]: bsize, length, _ = hidden_states.shape is_update = length == 1 and past_states is not None bool_mask: mx.array | None = None seq_idx: mx.array | None = None if attention_mask is not None: if len(attention_mask.shape) == 2: attention_mask = mx.broadcast_to( attention_mask[None, None], (bsize, 1, attention_mask.shape[0], attention_mask.shape[1]), ) assert len(attention_mask.shape) == 4 if past_states is None: # TODO: support seq_idx with cache bool_mask_4d = mx.array(attention_mask == 0, dtype=mx.bool_) # type: ignore is_first_token = _is_first_token(bool_mask_4d)[:, 0, :] seq_idx = mx.cumsum(is_first_token, axis=-1) - 1 seq_idx = seq_idx.astype(mx.int32) # `generate` function creates attention mask that contains past tokens, # but mamba does not use them attention_mask = attention_mask[:, 0, -length:, -length:] bool_mask = mx.array(mx.diagonal(attention_mask, axis1=-2, axis2=-1) == 0) conv_state: mx.array | None ssm_state: mx.array | None if past_states is None: conv_state = None ssm_state = None elif past_states[self.layer_idx] is None: conv_state = mx.zeros( (bsize, self.intermediate_size, self.d_conv - 1), dtype=hidden_states.dtype, ) ssm_state = mx.zeros( (bsize, self.num_heads, self.hidden_size_per_head, self.d_state), dtype=mx.float32, ) else: c = past_states[self.layer_idx] assert isinstance(c, PlamoMambaCache) conv_state = c.conv_state ssm_state = c.ssm_state zx = self.in_proj(hidden_states) zx = zx.reshape(bsize, length, self.num_heads, -1) # z: (bsize, length, num_heads, hidden_size_per_head) # x: (bsize, length, num_heads, hidden_size_per_head) z, x = mx.split( zx, [ self.hidden_size_per_head, ], axis=-1, ) # conv x = x.reshape(bsize, length, -1).transpose(0, 2, 1) # (bsize, intermediate_size, length) if bool_mask is not None: x = mx.where(bool_mask[:, None, :], x, 0.0) if is_update: assert conv_state is not None x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x) else: x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx) x = x.astype(hidden_states.dtype) x = x.transpose(0, 2, 1) # (bsize, length, intermediate_size) x = x.reshape(bsize, length, -1) # x: (bsize, length, num_heads, hidden_size_per_head) # B: (bsize, length, 1, d_state) # C: (bsize, length, 1, d_state) # dt: (bsize, length, dt_dim) BCdt = self.bcdt_proj(x) x = x.reshape(bsize, length, self.num_heads, -1) B, C, dt = mx.split(BCdt, [self.d_state, self.d_state * 2], axis=-1) B = B[:, :, None, :] C = C[:, :, None, :] A = -mx.exp(self.A_log.astype(mx.float32)) # (num_heads,) dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :] B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :] C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :] # (bsize, length, num_heads, 1) dt = self.dt_proj(dt)[..., None] # TODO it may not be required B = mx.broadcast_to(B, (B.shape[0], B.shape[1], self.num_heads, B.shape[3])) C = mx.broadcast_to(C, (C.shape[0], C.shape[1], self.num_heads, C.shape[3])) if bool_mask is not None: """ state will be updates by following: ``` dt = softplus(dt) dA = exp(dt * A) state_next = state * dA + dB * x ``` To avoid updating state, we set dt to -inf and x to 0 because `softplus(-inf) = 0` and `exp(0) = 1` """ dt = mx.where(bool_mask[:, :, None, None], dt, float("-inf")) x = mx.where(bool_mask[:, :, None, None], x, 0.0) # ssm if is_update: assert ssm_state is not None out, ssm_state = ssd_update_state( ssm_state, x[:, 0], dt[:, 0].reshape(bsize, -1), A, B[:, 0], C[:, 0], D=self.D, z=z[:, 0], dt_bias=self.dt_bias, dt_softplus=True, ) else: tmp = ssd_chunk_scan_combined( x, dt.reshape(bsize, length, -1), A, B, C, self.chunk_size, D=self.D, z=z, dt_bias=self.dt_bias, dt_softplus=True, return_final_states=past_states is not None, seq_idx=seq_idx, ssm_state=ssm_state, ) if past_states is not None: out, ssm_state = tmp else: assert isinstance(tmp, mx.array) out = tmp y = self.out_proj(out.reshape(bsize, length, -1)) if past_states is not None: assert ssm_state is not None assert conv_state is not None past_states.update_mamba(conv_state, ssm_state, self.layer_idx) return y, past_states def swa_mask(q_len: int, kv_len: int, window_size: int) -> mx.array: max_len = max(q_len, kv_len) mask = mx.tril( mx.triu(mx.ones((max_len, max_len), dtype=mx.bool_), k=-window_size), # type: ignore k=window_size, ) return mask[-q_len:, -kv_len:] class Attention(nn.Module): def __init__(self, config: ModelArgs, layer_idx: int) -> None: super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size head_dim = config.hidden_size_per_head self.max_position_embeddings = config.max_position_embeddings self.scale = head_dim**-0.5 self.q_num_heads = config.num_attention_heads self.qk_dim = self.v_dim = head_dim self.k_num_heads = self.v_num_heads = config.num_key_value_heads assert self.q_num_heads % self.k_num_heads == 0 self.n_group = self.q_num_heads // self.k_num_heads self.q_proj_dim = self.q_num_heads * self.qk_dim self.k_proj_dim = self.k_num_heads * self.qk_dim self.v_proj_dim = self.k_num_heads * self.v_dim self.qkv_proj = nn.Linear( self.hidden_size, self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, bias=False, ) self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False) self.q_weight = mx.ones((self.q_num_heads, self.qk_dim)) self.k_weight = mx.ones((self.k_num_heads, self.qk_dim)) self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, past_states: Optional[PlamoCache] = None, output_attentions: bool = False, ) -> tuple[mx.array, Optional[mx.array], Optional[PlamoCache]]: bsz, q_len, _ = hidden_states.shape qkv = self.qkv_proj(hidden_states) query_states, key_states, value_states = mx.split( qkv, [self.q_proj_dim, self.q_proj_dim + self.k_proj_dim], axis=-1 ) query_states = query_states.reshape(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(0, 2, 1, 3) key_states = key_states.reshape(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(0, 2, 1, 3) value_states = value_states.reshape(bsz, q_len, self.v_num_heads, self.v_dim).transpose(0, 2, 1, 3) attn_dtype = query_states.dtype query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None] key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None] if past_states is not None: # reuse k, v, self_attention key_states_new = key_states value_states_new = value_states key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) # type: ignore past_states.update_attention(key_states_new, value_states_new, self.layer_idx) kv_seq_len = key_states.shape[-2] position_ids = mx.arange(kv_seq_len, dtype=mx.int64)[None] q_position_ids = position_ids[:, -query_states.shape[2] :] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids) key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) # [bsz, nh, t, hd] # expand shared kv assert self.k_num_heads == self.v_num_heads key_states = mx.tile(key_states, (1, self.n_group, 1, 1)) value_states = mx.tile(value_states, (1, self.n_group, 1, 1)) full_attn = self.layer_idx in self.config.full_attention_idx query_states = query_states.astype(attn_dtype) key_states = key_states.astype(attn_dtype) value_states = value_states.astype(attn_dtype) if attention_mask is not None and attention_mask.dtype != bool: attention_mask = attention_mask.astype(attn_dtype) if attention_mask is None: if not full_attn: assert key_states.shape[2] <= self.config.attention_window_size + 1 mask = create_attention_mask(hidden_states) attn_output = mx.fast.scaled_dot_product_attention( query_states, key_states, value_states, scale=self.scale, mask=mask, ) else: if attention_mask.dtype == bool: attention_mask = mx.where(attention_mask, mx.array(0.0, dtype=mx.float16), float("-inf")) if len(attention_mask.shape) == 2: attention_mask = attention_mask[None, None] assert len(attention_mask.shape) == 4 if not full_attn: m_swa = swa_mask( query_states.shape[2], key_states.shape[2], self.config.attention_window_size, ) # `generate` function creates attention mask that does not consider sliding window m_swa = m_swa[None, None] attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :] attention_mask = mx.where(m_swa, attention_mask, float("-inf")) # like AttentionMaskConverter._unmask_unattended in huggingface.transfoermers, # we need to attend to all tokens in masked rows for `scaled_dot_product_attention` bool_mask = mx.logical_not(mx.isneginf(attention_mask)) valid_tokens = mx.sum(bool_mask, axis=-1).astype(mx.bool_) # type: ignore # (..., q_len) attention_mask = mx.where(valid_tokens[..., None], attention_mask, float(0.0)) attn_output = mx.fast.scaled_dot_product_attention( query_states, key_states, value_states, scale=self.scale, mask=attention_mask, ) attn_output = attn_output.transpose(0, 2, 1, 3) attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_states class MLP(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_up_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) def __call__(self, x: mx.array) -> mx.array: h = self.gate_up_proj(x) h = _swiglu(h) return self.down_proj(h) # type: ignore class PlamoDecoderLayer(nn.Module): def __init__(self, config: ModelArgs, is_mamba: bool, layer_idx: int) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.is_mamba = is_mamba self.mixer: nn.Module if is_mamba: self.mixer = Mamba(config, layer_idx) else: self.mixer = Attention(config, layer_idx) self.mlp = MLP(config) """ Notes: The model performance was degraded when setting all offsets to 1. """ self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5) self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5)) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, past_state: Optional[PlamoCache] = None, output_attentions: Optional[bool] = False, ) -> tuple[Any, ...]: # from LlamaDecoder residual = hidden_states hidden_states = self.pre_mixer_norm(hidden_states) # Self Attention if self.is_mamba: hidden_states_sa, present_key_value = self.mixer( hidden_states=hidden_states, attention_mask=attention_mask, past_states=past_state, ) self_attn_weights = None else: hidden_states_sa, self_attn_weights, present_key_value = self.mixer( hidden_states=hidden_states, attention_mask=attention_mask, past_states=past_state, output_attentions=output_attentions, ) hidden_states_sa = self.post_mixer_norm(hidden_states_sa) hidden_states = residual + hidden_states_sa residual = hidden_states hidden_states = self.pre_mlp_norm(hidden_states) # Fully Connected hidden_states_mlp = self.mlp(hidden_states) # Residual hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp) hidden_states = residual + hidden_states_mlp outputs: Any = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs # type: ignore def is_mamba(config: ModelArgs, i: int) -> bool: if not config.mamba_enabled: return False assert config.mamba_step > 1 assert i < config.num_hidden_layers if config.num_hidden_layers <= (config.mamba_step // 2): # use attention in last layer return i != config.num_hidden_layers - 1 return (i % config.mamba_step) != (config.mamba_step // 2) class PlamoDecoder(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.layers = [ PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i) for i in range(config.num_hidden_layers) ] self.gradient_checkpointing = False def __call__(self, x: DecoderInput) -> DecoderOutput: all_hidden_states: Optional[tuple[mx.array, ...]] = () if x.output_hidden_states else None all_self_attns: Optional[tuple[mx.array, ...]] = () if x.output_attentions else None hidden_states = x.hidden_states for decoder_layer in self.layers: if x.output_hidden_states: assert all_hidden_states is not None all_hidden_states += (hidden_states,) if self.training and x.gradient_checkpointing: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, x.attention_mask, x.past_states, x.output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=x.attention_mask, past_state=x.past_states, output_attentions=x.output_attentions, ) hidden_states = layer_outputs[0] if x.output_attentions: assert layer_outputs[1] is not None assert all_self_attns is not None all_self_attns += (layer_outputs[1],) return DecoderOutput(hidden_states, all_hidden_states, all_self_attns) class ModelOutput(OrderedDict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def to_tuple(self) -> tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys()) class BaseModelOutputWithPast(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (:obj:`mx.array` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, 1, hidden_size)` is output. past_key_values (:obj:`list[mx.array]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): list of :obj:`mx.array` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see ``past_key_values`` input) to speed up sequential decoding. hidden_states (:obj:`tuple(mx.array)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`mx.array` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(mx.array)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`mx.array` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.last_hidden_state: mx.array = kwargs.pop("last_hidden_state") self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None) self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None) self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None) class CausalLMOutputWithPast(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`mx.array` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`mx.array` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(mx.array))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(mx.array)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(mx.array)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `mx.array` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(mx.array)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `mx.array` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.loss: Optional[mx.array] = kwargs.pop("loss", None) self.logits: mx.array | None = kwargs.pop("logits", None) self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None) self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None) self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None) class PlamoPreTrainedModel(nn.Module): # type: ignore config_class = ModelArgs _no_split_modules: list[str] base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["PlamoDecoderLayer"] _skip_keys_device_placement = "past_key_values" _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def __init__(self, config: ModelArgs): super().__init__() self.config = config def _init_weights(self, module: nn.Module) -> None: std = 0.02 if isinstance(module, nn.Linear): module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape) if module.bias is not None: module.bias = mx.zeros_like(module.bias) elif isinstance(module, nn.Embedding): module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape) if module.padding_idx is not None: module.weight[module.padding_idx] = mx.zeros_like(module.weight[module.padding_idx]) class PlamoModel(PlamoPreTrainedModel): def __init__(self, config: ModelArgs): super().__init__(config) assert config.eval_attention_n_bit is None assert config.eval_mlp_n_bit is None self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = PlamoDecoder(config) # type: ignore self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing # self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embed_tokens def set_input_embeddings(self, value: nn.Embedding) -> None: self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask: mx.array, input_shape: tuple[int, int], inputs_embeds: Optional[mx.array], past_key_values_length: int, ) -> Optional[mx.array]: # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask: Optional[mx.array] = None if input_shape[-1] > 1: assert inputs_embeds is not None combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length, ) input_shape = (input_shape[0], combined_attention_mask.shape[2]) if attention_mask is not None: if attention_mask.ndim == 4: # Custom 4D attention mask expanded_attn_mask = attention_mask else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] assert inputs_embeds is not None expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def __call__( self, input_ids: Optional[mx.array] = None, attention_mask: Optional[mx.array] = None, position_ids: Optional[mx.array] = None, past_key_values: Optional[PlamoCache] = None, inputs_embeds: Optional[mx.array] = None, image_features: Optional[mx.array] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPast]: assert input_ids is not None output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values.get_seq_length() seq_length_with_past = seq_length_with_past + past_key_values_length if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if image_features is not None: assert self.config.image_token_id is not None image_embeds = self.image_proj(image_features) assert image_embeds.shape == inputs_embeds.shape, ( image_embeds.shape, inputs_embeds.shape, ) mask = input_ids == self.config.image_token_id inputs_embeds[mask] = image_embeds[mask] # embed positions require_attn_mask = False if not self.training or past_key_values is not None: require_attn_mask = True if seq_length_with_past >= self.config.attention_window_size: require_attn_mask = True if require_attn_mask and attention_mask is None: attention_mask = mx.ones( (batch_size, seq_length_with_past), dtype=mx.bool_, # type: ignore ) if attention_mask is not None: attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: use_cache = False if use_cache and past_key_values is None: past_key_values = PlamoCache(self.config) # decoder layers out = self.layers( DecoderInput( hidden_states, attention_mask, past_key_values, output_hidden_states, output_attentions, self.gradient_checkpointing, ) ) assert isinstance(out, DecoderOutput) hidden_states = out.hidden_states all_hidden_states = out.all_hidden_states all_self_attns = out.all_self_attns hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: assert all_hidden_states is not None all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, past_key_values, all_hidden_states, all_self_attns, ] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) class Model(PlamoPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Without this, the model cannot be loaded into a meta device. # Relevant code: # https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L4376-L4381 # https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L356 # https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068 _supports_param_buffer_assignment = False def __init__(self, config: ModelArgs) -> None: super().__init__(config) self.config = config self.model_type = config.model_type self.model = PlamoModel(config) self.vocab_size = config.vocab_size vocab_size = ((self.vocab_size + 15) // 16) * 16 if not config.tie_word_embeddings: self.lm_head: nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False) # Initialize weights and apply final processing # self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.model.embed_tokens def set_input_embeddings(self, value: nn.Embedding) -> None: self.model.embed_tokens = value def get_output_embeddings(self) -> nn.Module: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Module) -> None: self.lm_head = new_embeddings def set_decoder(self, decoder: PlamoModel) -> None: self.model = decoder def get_decoder(self) -> PlamoModel: return self.model def sanitize(self, weights: dict[Any, Any]) -> dict[Any, Any]: for k, v in weights.items(): if "conv1d.weight" in k and v.shape[-1] != 1: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self) -> PlamoCache: return PlamoCache(self.config) def __call__(self, inputs: mx.array, cache: PlamoCache | None = None) -> mx.array: model_inputs = self.prepare_inputs_for_generation( input_ids=inputs, past_key_values=cache, use_cache=self.config.use_cache, ) model_inputs["input_ids"] = inputs output = self.forward(**model_inputs) if not isinstance(output, CausalLMOutputWithPast): raise ValueError( f"Unexpected output type for causal language model: {type(output)} != CausalLMOutputWithPast" ) if output.logits is not None: return output.logits else: raise ValueError("The model did not return any logits.") def forward( self, input_ids: Optional[mx.array] = None, attention_mask: Optional[mx.array] = None, position_ids: Optional[mx.array] = None, past_key_values: Optional[PlamoCache] = None, inputs_embeds: Optional[mx.array] = None, image_features: Optional[mx.array] = None, labels: Optional[mx.array] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[Any, ...], CausalLMOutputWithPast]: r""" Args: labels (`mx.array` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" assert input_ids is not None output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, image_features=image_features, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(outputs, tuple): hidden_states = outputs[0] elif isinstance(outputs, BaseModelOutputWithPast): hidden_states = outputs.last_hidden_state if self.config.tie_word_embeddings: logits = self.model.embed_tokens.as_linear(hidden_states) else: logits = self.lm_head(hidden_states) logits = logits[..., : self.vocab_size] loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :] shift_labels = labels[..., 1:] # Flatten the tokens loss_fct = nn.losses.cross_entropy shift_logits = shift_logits.reshape((-1, self.config.vocab_size)) shift_labels = shift_labels.reshape((-1,)) # Enable model parallelism loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output if not isinstance(outputs, BaseModelOutputWithPast): raise ValueError( f"Unexpected output type for causal language model: {type(outputs)} != BaseModelOutputWithPast" ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids: mx.array, past_key_values: Optional[PlamoCache] = None, attention_mask: Optional[mx.array] = None, inputs_embeds: Optional[mx.array] = None, image_features: Optional[mx.array] = None, **kwargs: Any, ) -> dict[str, Any]: if past_key_values: input_ids = input_ids[:, -1:] if image_features is not None: image_features = image_features[:, -1:, :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.astype(mx.int64).cumsum(-1) - 1 position_ids = mx.where(attention_mask == 0, 1, position_ids) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs: dict[str, Any] = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "image_features": image_features, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values: PlamoCache, beam_idx: mx.array) -> PlamoCache: past_key_values.reorder_cache(beam_idx) return past_key_values @property def layers(self): return self.model.layers.layers