import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, KVCache, create_attention_mask from .switch_layers import SwitchGLU @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int num_experts_per_tok: int num_experts: int moe_intermediate_size: int shared_expert_intermediate_size: int rms_norm_eps: float vocab_size: int num_key_value_heads: Optional[int] = None rope_theta: float = 1000000 rope_traditional: bool = False rope_scaling: Optional[Dict[str, Union[float, str]]] = None tie_word_embeddings: bool = False def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads if self.rope_scaling: required_keys = {"factor", "type"} if not all(key in self.rope_scaling for key in required_keys): raise ValueError(f"rope_scaling must contain keys {required_keys}") if self.rope_scaling["type"] != "linear": raise ValueError("rope_scaling 'type' currently only supports 'linear'") class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads assert args.num_key_value_heads is not None self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=args.rope_theta, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[KVCache] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class Qwen2MoeSparseMoeBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size intermediate_size = args.moe_intermediate_size shared_expert_intermediate_size = args.shared_expert_intermediate_size self.num_experts = num_experts = args.num_experts self.top_k = args.num_experts_per_tok self.gate = nn.Linear(dim, num_experts, bias=False) self.switch_mlp = SwitchGLU(dim, intermediate_size, num_experts) self.shared_expert = MLP(dim, shared_expert_intermediate_size) self.shared_expert_gate = nn.Linear(dim, 1, bias=False) def __call__( self, x: mx.array, ): gates = self.gate(x) gates = mx.softmax(gates, axis=-1, precise=True) k = self.top_k inds = mx.stop_gradient(mx.argpartition(-gates, kth=k - 1, axis=-1)[..., :k]) scores = mx.take_along_axis(gates, inds, axis=-1) y = self.switch_mlp(x, inds) y = (y * scores[..., None]).sum(axis=-2) shared_expert_output = self.shared_expert(x) shared_expert_output = ( mx.sigmoid(self.shared_expert_gate(x)) * shared_expert_output ) return y + shared_expert_output class Qwen2MoeDecoderLayer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.self_attn = Attention(args) self.mlp = Qwen2MoeSparseMoeBlock(args) self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[KVCache] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class Qwen2MoeModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ Qwen2MoeDecoderLayer(args=args) for _ in range(args.num_hidden_layers) ] self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = Qwen2MoeModel(args) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out = self.model(inputs, cache) return self.lm_head(out) def sanitize(self, weights): if "model.layers.0.mlp.experts.0.up_proj.weight" not in weights: return weights for l in range(self.args.num_hidden_layers): prefix = f"model.layers.{l}" for n in ["up_proj", "down_proj", "gate_proj"]: for k in ["weight", "scales", "biases"]: if f"{prefix}.mlp.experts.0.{n}.{k}" in weights: to_join = [ weights.pop(f"{prefix}.mlp.experts.{e}.{n}.{k}") for e in range(self.args.num_experts) ] weights[f"{prefix}.mlp.switch_mlp.{n}.{k}"] = mx.stack(to_join) return weights @property def layers(self): return self.model.layers @property def head_dim(self): return self.args.hidden_size // self.args.num_attention_heads @property def n_kv_heads(self): return self.args.num_key_value_heads