import glob import inspect import json import math from dataclasses import dataclass from pathlib import Path from typing import Optional import mlx.core as mx import mlx.nn as nn from huggingface_hub import snapshot_download from mlx.utils import tree_unflatten from transformers import AutoTokenizer @dataclass class ModelArgs: max_sequence_length: int = 2048 num_vocab: int = 51200 model_dim: int = 2560 num_heads: int = 32 num_layers: int = 32 rotary_dim: int = 32 @classmethod def from_dict(cls, params): return cls( **{ k: v for k, v in params.items() if k in inspect.signature(cls).parameters } ) class LayerNorm(nn.LayerNorm): def __call__(self, x: mx.array) -> mx.array: return super().__call__(x.astype(mx.float32)).astype(x.dtype) class RoPEAttention(nn.Module): def __init__(self, dims: int, num_heads: int, rotary_dim: int): super().__init__() self.num_heads = num_heads self.rope = nn.RoPE(rotary_dim, traditional=False) self.Wqkv = nn.Linear(dims, 3 * dims) self.out_proj = nn.Linear(dims, dims) def __call__(self, x, mask=None, cache=None): qkv = self.Wqkv(x) queries, keys, values = mx.split(qkv, 3, axis=-1) # Extract some shapes num_heads = self.num_heads B, L, D = queries.shape # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries.astype(mx.float32) keys = keys.astype(mx.float32) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) scores = (queries * scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask scores = mx.softmax(scores, axis=-1).astype(values.dtype) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.out_proj(values_hat), (keys, values) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.fc1 = nn.Linear(dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, dim) self.act = nn.GELU(approx="precise") def __call__(self, x) -> mx.array: return self.fc2(self.act(self.fc1(x))) class ParallelBlock(nn.Module): def __init__(self, config: ModelArgs): super().__init__() dims = config.model_dim mlp_dims = dims * 4 self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim) self.ln = LayerNorm(dims) self.mlp = MLP(dims, mlp_dims) def __call__(self, x, mask, cache): h = self.ln(x) attn_h, cache = self.mixer(h, mask, cache) ff_h = self.mlp(h) return attn_h + ff_h + x, cache class TransformerDecoder(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.embd = Embd(config) self.h = [ParallelBlock(config) for i in range(config.num_layers)] def __call__(self, x, mask, cache): x = self.embd(x) if cache is None: cache = [None] * len(self.h) for e, layer in enumerate(self.h): x, cache[e] = layer(x, mask, cache[e]) return x, cache class Embd(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.wte = nn.Embedding(config.num_vocab, config.model_dim) def __call__(self, x): return self.wte(x) class OutputHead(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.ln = LayerNorm(config.model_dim) self.linear = nn.Linear(config.model_dim, config.num_vocab) def __call__(self, inputs): return self.linear(self.ln(inputs)) class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.transformer = TransformerDecoder(config) self.lm_head = OutputHead(config) def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> tuple[mx.array, mx.array]: mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y, cache = self.transformer(x, mask, cache) return self.lm_head(y), cache def generate(prompt: mx.array, model: Model, temp: float = 0.0): def sample(logits): if temp == 0: return mx.argmax(logits, axis=-1) else: return mx.random.categorical(logits * (1 / temp)) y = prompt cache = None while True: logits, cache = model(y[None], cache=cache) logits = logits[:, -1, :] y = sample(logits) yield y def load(path_or_hf_repo: str): # If the path exists, it will try to load model form it # otherwise download and cache from the hf_repo and cache model_path = Path(path_or_hf_repo) if not model_path.exists(): model_path = Path( snapshot_download( repo_id=path_or_hf_repo, allow_patterns=["*.json", "*.safetensors", "tokenizer.model"], ) ) with open(model_path / "config.json", "r") as f: config = json.loads(f.read()) quantization = config.get("quantization", None) model_args = ModelArgs.from_dict(config) weight_files = glob.glob(str(model_path / "*.safetensors")) if len(weight_files) == 0: raise FileNotFoundError("No safetensors found in {}".format(model_path)) weights = {} for wf in weight_files: weights.update(mx.load(wf).items()) model = Model(model_args) if quantization is not None: nn.QuantizedLinear.quantize_module(model, **quantization) model.load_weights(list(weights.items())) mx.eval(model.parameters()) tokenizer = AutoTokenizer.from_pretrained( model_path, ) return model, tokenizer