from dataclasses import dataclass from sys import exit from typing import Optional, Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs try: import hf_olmo except ImportError: print("To run olmo install ai2-olmo: pip install ai2-olmo") exit(1) @dataclass class ModelArgs(BaseModelArgs): model_type: str d_model: int n_layers: int mlp_hidden_size: int n_heads: int vocab_size: int embedding_size: int rope_theta: float = 10000 rope_traditional: bool = False mlp_ratio: int = 4 weight_tying: bool = False def __post_init__(self): self.mlp_hidden_size = ( self.mlp_hidden_size if self.mlp_hidden_size is not None else self.mlp_ratio * self.d_model ) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_heads = args.n_heads dim = args.d_model self.ff_proj = nn.Linear(dim, args.mlp_hidden_size, bias=False) self.ff_out = nn.Linear(args.mlp_hidden_size // 2, dim, bias=False) self.att_norm = nn.LayerNorm(dim, affine=False) self.ff_norm = nn.LayerNorm(dim, affine=False) head_dim = dim // self.n_heads self.scale = head_dim**-0.5 self.att_proj = nn.Linear(dim, 3 * dim, bias=False) self.attn_out = nn.Linear(dim, dim, bias=False) self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=args.rope_theta, ) self.args = args def attend( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = mx.split(self.att_proj(x), 3, axis=-1) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores += mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.attn_out(output) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r = self.attend(self.att_norm(x), mask, cache) h = x + r x1, x2 = mx.split(self.ff_proj(self.ff_norm(h)), 2, axis=-1) out = h + self.ff_out(nn.silu(x2) * x1) return out class Transformer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_layers = args.n_layers self.weight_tying = args.weight_tying self.wte = nn.Embedding(args.embedding_size, args.d_model) self.blocks = [TransformerBlock(args=args) for _ in range(args.n_layers)] if not self.weight_tying: self.ff_out = nn.Linear(args.d_model, args.embedding_size, bias=False) self.norm = nn.LayerNorm(args.d_model, affine=False) def __call__( self, inputs: mx.array, cache=None, ): h = self.wte(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.blocks) for block, c in zip(self.blocks, cache): h = block(h, mask, c) h = self.norm(h) if self.weight_tying: return self.wte.as_linear(h), cache return self.ff_out(h) class OlmoModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.transformer = Transformer(args) def __call__( self, inputs: mx.array, cache=None, ): return self.transformer(inputs, cache) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model_type = args.model_type self.model = OlmoModel(args) self.args = args def __call__( self, inputs: mx.array, cache=None, ): return self.model(inputs, cache) @property def layers(self): return self.model.transformer.blocks @property def head_dim(self): return self.args.d_model // self.args.n_heads @property def n_kv_heads(self): return self.args.n_heads