import argparse import resnet import numpy as np import mlx.nn as nn import mlx.core as mx import mlx.optimizers as optim from dataset import get_cifar10 parser = argparse.ArgumentParser(add_help=True) parser.add_argument( "--arch", type=str, default="resnet20", help="model architecture [resnet20, resnet32, resnet44, resnet56, resnet110, resnet1202]", ) parser.add_argument("--batch_size", type=int, default=128, help="batch size") parser.add_argument("--epochs", type=int, default=100, help="number of epochs") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate") parser.add_argument("--seed", type=int, default=0, help="random seed") parser.add_argument("--cpu_only", action="store_true", help="use cpu only") def loss_fn(model, inp, tgt): return mx.mean(nn.losses.cross_entropy(model(inp), tgt)) def eval_fn(model, inp, tgt): return mx.mean(mx.argmax(model(inp), axis=1) == tgt) def train_epoch(model, train_iter, optimizer, epoch): def train_step(model, inp, tgt): output = model(inp) loss = mx.mean(nn.losses.cross_entropy(output, tgt)) acc = mx.mean(mx.argmax(output, axis=1) == tgt) return loss, acc train_step_fn = nn.value_and_grad(model, train_step) losses = [] accs = [] for batch_counter, batch in enumerate(train_iter): x = mx.array(batch["image"]) y = mx.array(batch["label"]) (loss, acc), grads = train_step_fn(model, x, y) optimizer.update(model, grads) mx.eval(model.parameters(), optimizer.state) loss_value = loss.item() acc_value = acc.item() losses.append(loss_value) accs.append(acc_value) if batch_counter % 10 == 0: print( f"Epoch {epoch:02d}[{batch_counter:03d}]: tr_loss {loss_value:.3f}, tr_acc {acc_value:.3f}" ) mean_tr_loss = np.mean(np.array(losses)) mean_tr_acc = np.mean(np.array(accs)) return mean_tr_loss, mean_tr_acc def test_epoch(model, test_iter, epoch): accs = [] for batch_counter, batch in enumerate(test_iter): x = mx.array(batch["image"]) y = mx.array(batch["label"]) acc = eval_fn(model, x, y) acc_value = acc.item() accs.append(acc_value) mean_acc = np.mean(np.array(accs)) return mean_acc def main(args): np.random.seed(args.seed) mx.random.seed(args.seed) model = resnet.__dict__[args.arch]() print("num_params: {:0.04f} M".format(model.num_params() / 1e6)) mx.eval(model.parameters()) optimizer = optim.Adam(learning_rate=args.lr) for epoch in range(args.epochs): # get data every epoch # or set .repeat() on the data stream appropriately train_data, test_data, tr_batches, _ = get_cifar10(args.batch_size) epoch_tr_loss, epoch_tr_acc = train_epoch(model, train_data, optimizer, epoch) print( f"Epoch {epoch}: avg. tr_loss {epoch_tr_loss:.3f}, avg. tr_acc {epoch_tr_acc:.3f}" ) epoch_test_acc = test_epoch(model, test_data, epoch) print(f"Epoch {epoch}: Test_acc {epoch_test_acc:.3f}") if __name__ == "__main__": args = parser.parse_args() if args.cpu_only: mx.set_default_device(mx.cpu) main(args)