from dataclasses import dataclass from typing import Optional, Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int = 8192 num_hidden_layers: int = 40 intermediate_size: int = 22528 num_attention_heads: int = 64 num_key_value_heads: int = 64 rope_theta: float = 8000000.0 vocab_size: int = 256000 layer_norm_eps: float = 1e-05 logit_scale: float = 0.0625 attention_bias: bool = False layer_norm_bias: bool = False use_qk_norm: bool = False class LayerNorm2D(nn.Module): def __init__(self, d1, d2, eps): super().__init__() self.weight = mx.zeros((d1, d2)) self.eps = eps def __call__(self, x): return self.weight * mx.fast.layer_norm(x, None, None, self.eps) class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // args.num_attention_heads self.scale = head_dim**-0.5 attetion_bias = args.attention_bias self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias) self.use_qk_norm = args.use_qk_norm if self.use_qk_norm: self.q_norm = LayerNorm2D(self.n_heads, head_dim, eps=args.layer_norm_eps) self.k_norm = LayerNorm2D( self.n_kv_heads, head_dim, eps=args.layer_norm_eps ) self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) queries = queries.reshape(B, L, self.n_heads, -1) keys = keys.reshape(B, L, self.n_kv_heads, -1) if self.use_qk_norm: queries = self.q_norm(queries) keys = self.k_norm(keys) queries = queries.transpose(0, 2, 1, 3) keys = keys.transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output), (keys, values) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) def __call__(self, x): return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.n_heads = args.num_attention_heads self.self_attn = Attention(args) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: h = self.input_layernorm(x) attn_h, cache = self.self_attn(h, mask, cache) ff_h = self.mlp(h) return attn_h + ff_h + x, cache class CohereModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args) for _ in range(args.num_hidden_layers) ] self.norm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias ) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): h, cache[e] = layer(h, mask, cache[e]) return self.norm(h), cache class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model_type = args.model_type self.model = CohereModel(args) def __call__( self, inputs: mx.array, cache=None, ): out, cache = self.model(inputs, cache) out = out @ self.model.embed_tokens.weight.T out = out * self.model.args.logit_scale return out, cache @property def layers(self): return self.model.layers