# Copyright © 2023-2024 Apple Inc. from dataclasses import dataclass from typing import Any, Optional import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int num_key_value_heads: int norm_epsilon: float = 1e-5 vocab_size: int = 49152 rope_theta: float = 100000 tie_word_embeddings: bool = True class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // args.num_attention_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=True) self.rope = nn.RoPE(head_dim, traditional=False, base=args.rope_theta) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.c_fc = nn.Linear(dim, hidden_dim, bias=True) self.c_proj = nn.Linear(hidden_dim, dim, bias=True) def __call__(self, x): return self.c_proj(nn.gelu(self.c_fc(x))) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.n_heads = args.num_attention_heads self.self_attn = Attention(args) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.norm_epsilon) self.post_attention_layernorm = nn.LayerNorm( args.hidden_size, eps=args.norm_epsilon ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class Starcoder2Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args) for _ in range(args.num_hidden_layers) ] self.norm = nn.LayerNorm(args.hidden_size, eps=args.norm_epsilon) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = Starcoder2Model(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out = self.model(inputs, cache) if self.args.tie_word_embeddings: out = self.model.embed_tokens.as_linear(out) else: out = self.lm_head(out) return out @property def layers(self): return self.model.layers