# Copyright © 2023-2024 Apple Inc. from functools import partial import mlx.core as mx @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state) def min_p_sampling( logits: mx.array, min_p: float, min_tokens_to_keep: int = 1, temperature=1.0, ) -> mx.array: """ Apply min-p sampling to the logits. Min-p keeps all tokens that are above a minimum probability, scaled by the probability of the most likely token. As a result, the filter is more aggressive given a very high-probability token. Args: logits: The logits from the model's output. min_p (float): Minimum token probability. Typical values are in the 0.01-0.2 range, comparably selective as setting `top_p` in the 0.99-0.8 range. min_tokens_to_keep (int, optional): Minimum number of tokens that cannot be filtered. Default: ``1``. """ if not (0 <= min_p <= 1.0): raise ValueError( f"`min_p` has to be a float in the [0, 1] interval, but is {min_p}" ) if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1): raise ValueError( f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) # reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605 # Softmax probabilities probs = mx.softmax(logits * (1 / temperature), axis=-1) # Indices sorted in decreasing order sorted_indices = mx.argsort(-logits).squeeze(0) sorted_probs = probs[..., sorted_indices] # Top probability top_probs = probs[..., sorted_indices[0]] # Calculate the min_p threshold scaled_min_p = min_p * top_probs # Mask tokens that have a probability less than the scaled min_p tokens_to_remove = sorted_probs < scaled_min_p tokens_to_remove[..., :min_tokens_to_keep] = False # Create pool of tokens with probability less than scaled min_p selected_probs = mx.where(tokens_to_remove, 0, sorted_probs) # Return sampled token sorted_token = mx.random.categorical(mx.log(selected_probs)) return sorted_indices[sorted_token] @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state) def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array: """ Apply top-p (nucleus) sampling to logits. Args: logits: The logits from the model's output. top_p: The cumulative probability threshold for top-p filtering. temperature: Temperature parameter for softmax distribution reshaping. Returns: token selected based on the top-p criterion. """ # referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460 probs = mx.softmax(logits * (1 / temperature), axis=-1) # sort probs in ascending order sorted_indices = mx.argsort(probs, axis=-1) sorted_probs = probs[..., sorted_indices.squeeze(0)] cumulative_probs = mx.cumsum(sorted_probs, axis=-1) # select tokens with cumulative probs below threshold top_probs = mx.where( cumulative_probs > 1 - top_p, sorted_probs, 0, ) sorted_token = mx.random.categorical(mx.log(top_probs)) token = sorted_indices.squeeze(0)[sorted_token] return token @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state) def categorical_sampling(logits, temp): return mx.random.categorical(logits * (1 / temp))