from dataclasses import dataclass from functools import partial from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int dense_attention_every_n_layers: int ff_intermediate_size: int gegelu_limit: float num_hidden_layers: int num_attention_heads: int layer_norm_epsilon: float vocab_size: int num_key_value_heads: int = None mup_attn_multiplier: float = 1.0 mup_use_scaling: bool = True mup_embedding_multiplier: float = 10.0 mup_width_multiplier: float = 8.0 rope_embedding_base: float = 1000000 rope_position_scale: float = 1.0 blocksparse_block_size: int = (64,) blocksparse_num_local_blocks: int = 16 blocksparse_vert_stride: int = 8 @partial(mx.compile, shapeless=True) def gegelu_impl(a_gelu, a_linear, limit): a_gelu = mx.where( mx.isinf(a_gelu), a_gelu, mx.clip(a_gelu, a_min=None, a_max=limit), ) a_linear = mx.where( mx.isinf(a_linear), a_linear, mx.clip(a_linear, a_min=-limit, a_max=limit), ) out_gelu = a_gelu * mx.sigmoid(1.702 * a_gelu) return out_gelu * (a_linear + 1.0) def gegelu(x, limit): a_gelu, a_linear = x[..., ::2], x[..., 1::2] return gegelu_impl(a_gelu, a_linear, limit) class Attention(nn.Module): def __init__(self, args: ModelArgs, layer_idx): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.n_q_per_kv = n_heads // n_kv_heads self.head_dim = head_dim = args.hidden_size // n_heads self.query_key_value = nn.Linear( dim, (self.n_heads + 2 * self.n_kv_heads) * head_dim ) self.dense = nn.Linear(dim, dim) if args.mup_use_scaling: norm_factor = head_dim / args.mup_attn_multiplier else: norm_factor = math.sqrt(head_dim) self.scale = 1.0 / norm_factor self.rope = nn.RoPE( head_dim, traditional=False, base=args.rope_embedding_base, scale=args.rope_position_scale, ) if layer_idx % args.dense_attention_every_n_layers == 0: self.block_sparse = True self.blocksparse_block_size = args.blocksparse_block_size if self.blocksparse_block_size not in (32, 64): raise ValueError( f"Unsupported block size {self.blocksparse_block_size}" ) self.blocksparse_num_local_blocks = args.blocksparse_num_local_blocks self.blocksparse_vert_stride = args.blocksparse_vert_stride else: self.block_sparse = False def _block_sparse_mask(self, q_len, kv_len): vert_stride = self.blocksparse_vert_stride local_blocks = self.blocksparse_num_local_blocks block_size = self.blocksparse_block_size n_heads = self.n_heads kv_blocks = (kv_len + block_size - 1) // block_size q_blocks = (q_len + block_size - 1) // block_size q_pos = mx.arange(kv_blocks - q_blocks, kv_blocks)[None, :, None] k_pos = mx.arange(kv_blocks)[None, None] mask_vert_strided = ( mx.arange(kv_blocks)[None, :] + mx.arange(1, n_heads + 1)[:, None] ) % vert_stride mask_vert_strided = (mask_vert_strided == 0)[:, None, :] block_mask = (q_pos >= k_pos) & ( (q_pos - k_pos < local_blocks) | mask_vert_strided ) block_mask = block_mask.reshape( self.n_kv_heads, self.n_q_per_kv, *block_mask.shape[-2:] ) dense_mask = mx.repeat( mx.repeat(block_mask, block_size, axis=-1), block_size, axis=-2 ) return block_mask, dense_mask[..., -q_len:, :kv_len] def _block_sparse_attention(self, queries, keys, values, scale, mask): queries = scale * queries B = queries.shape[0] L = queries.shape[2] queries = mx.reshape(queries, (B, self.n_kv_heads, self.n_q_per_kv, L, -1)) keys = mx.expand_dims(keys, 2) values = mx.expand_dims(values, 2) # TODO get rid of dense mask if we have a fill value block_mask, dense_mask = self._block_sparse_mask(L, keys.shape[-2]) scores = queries @ mx.swapaxes(keys, -1, -2) # TODO, uncomment when faster # scores = mx.block_masked_mm( # queries, # mx.swapaxes(keys, -1, -2), # mask_out=block_mask, # block_size=self.blocksparse_block_size, # ) if mask is not None: scores = scores + mask scores = scores + mx.where( dense_mask, mx.array(0, scores.dtype), mx.array(-float("inf"), scores.dtype) ) scores = mx.softmax(scores, axis=-1, precise=True) output = scores @ values # TODO, uncomment when faster # output = mx.block_masked_mm( # scores, values, mask_lhs=block_mask, block_size=self.blocksparse_block_size # ) return mx.reshape(output, (B, self.n_heads, L, -1)) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape qkv = self.query_key_value(x) qkv = qkv.reshape(B, L, -1, self.n_q_per_kv + 2, self.head_dim) queries = qkv[..., :-2, :].flatten(-3, -2) keys = qkv[..., -2, :] values = qkv[..., -1, :] # Prepare the queries, keys and values for the attention computation queries = queries.transpose(0, 2, 1, 3) keys = keys.transpose(0, 2, 1, 3) values = values.transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) if self.block_sparse: output = self._block_sparse_attention( queries, keys, values, scale=self.scale, mask=mask ) else: output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.dense(output) class MLP(nn.Module): def __init__(self, args): super().__init__() dim = args.hidden_size hidden_dim = args.ff_intermediate_size self.gegelu_limit = args.gegelu_limit self.up_proj = nn.Linear(dim, 2 * hidden_dim) self.down_proj = nn.Linear(hidden_dim, dim) def __call__(self, x) -> mx.array: x = self.up_proj(x) return self.down_proj(gegelu(x, self.gegelu_limit)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs, layer_idx): super().__init__() self.num_attention_heads = args.num_attention_heads self.hidden_size = args.hidden_size self.self_attn = Attention(args, layer_idx) self.mlp = MLP(args) self.input_layernorm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_epsilon ) self.post_attention_layernorm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_epsilon, ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class Phi3Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.mup_embedding_multiplier = args.mup_embedding_multiplier self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args, layer_idx=l) for l in range(args.num_hidden_layers) ] self.final_layernorm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_epsilon ) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) if self.mup_embedding_multiplier: h = self.mup_embedding_multiplier * h mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.final_layernorm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model_type = args.model_type self.model = Phi3Model(args) self.args = args self.mup_width_multiplier = args.mup_width_multiplier self._dummy_tokenizer_ids = mx.array( [100256, 100258, 100259, 100260, 100264, 100265] + list(range(100267, 100352)) ) def __call__( self, inputs: mx.array, cache=None, ): out = self.model(inputs, cache) out = self.model.embed_tokens.as_linear(out) if self.mup_width_multiplier: out = out / self.mup_width_multiplier out[self._dummy_tokenizer_ids] = -float("inf") return out @property def layers(self): return self.model.layers @property def head_dim(self): return self.args.hidden_size // self.args.num_attention_heads def sanitize(self, weights): # Remove unused precomputed rotary freqs return { k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k } @property def n_kv_heads(self): return self.args.num_key_value_heads