# Copyright © 2024 Apple Inc. from dataclasses import dataclass from typing import Optional import mlx.core as mx import mlx.nn as nn from .layers import ( DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock, timestep_embedding, ) @dataclass class FluxParams: in_channels: int vec_in_dim: int context_in_dim: int hidden_size: int mlp_ratio: float num_heads: int depth: int depth_single_blocks: int axes_dim: list[int] theta: int qkv_bias: bool guidance_embed: bool class Flux(nn.Module): def __init__(self, params: FluxParams): super().__init__() self.params = params self.in_channels = params.in_channels self.out_channels = self.in_channels if params.hidden_size % params.num_heads != 0: raise ValueError( f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" ) pe_dim = params.hidden_size // params.num_heads if sum(params.axes_dim) != pe_dim: raise ValueError( f"Got {params.axes_dim} but expected positional dim {pe_dim}" ) self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND( dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim ) self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) self.guidance_in = ( MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() ) self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) self.double_blocks = [ DoubleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, ) for _ in range(params.depth) ] self.single_blocks = [ SingleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio ) for _ in range(params.depth_single_blocks) ] self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) def sanitize(self, weights): new_weights = {} for k, w in weights.items(): if k.endswith(".scale"): k = k[:-6] + ".weight" for seq in ["img_mlp", "txt_mlp", "adaLN_modulation"]: if f".{seq}." in k: k = k.replace(f".{seq}.", f".{seq}.layers.") break new_weights[k] = w return new_weights def __call__( self, img: mx.array, img_ids: mx.array, txt: mx.array, txt_ids: mx.array, timesteps: mx.array, y: mx.array, guidance: Optional[mx.array] = None, ) -> mx.array: if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") img = self.img_in(img) vec = self.time_in(timestep_embedding(timesteps, 256)) if self.params.guidance_embed: if guidance is None: raise ValueError( "Didn't get guidance strength for guidance distilled model." ) vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) vec = vec + self.vector_in(y) txt = self.txt_in(txt) ids = mx.concatenate([txt_ids, img_ids], axis=1) pe = self.pe_embedder(ids).astype(img.dtype) for block in self.double_blocks: img, txt = block(img=img, txt=txt, vec=vec, pe=pe) img = mx.concatenate([txt, img], axis=1) for block in self.single_blocks: img = block(img, vec=vec, pe=pe) img = img[:, txt.shape[1] :, ...] img = self.final_layer(img, vec) return img