mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00

* length masking * add mask to mlx_lm model interface * remove lengths * fix test: * comment + fix
167 lines
5.2 KiB
Python
167 lines
5.2 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
|
from .rope_utils import initialize_rope
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
hidden_size: int
|
|
num_layers: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
vocab_size: int
|
|
rope_theta: float
|
|
layer_norm_epsilon: float
|
|
num_key_value_heads: int
|
|
head_dim: Optional[int] = None
|
|
max_position_embeddings: Optional[int] = None
|
|
rope_traditional: bool = False
|
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
tie_word_embeddings: bool = True
|
|
attention_bias: bool = False
|
|
mlp_bias: bool = False
|
|
|
|
|
|
class AttentionModule(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
dim = args.hidden_size
|
|
self.n_heads = n_heads = args.num_attention_heads
|
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
self.head_dim = head_dim = args.head_dim or (dim // n_heads)
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
|
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
|
self.out_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias)
|
|
|
|
self.rope = initialize_rope(
|
|
self.head_dim,
|
|
args.rope_theta,
|
|
args.rope_traditional,
|
|
args.rope_scaling,
|
|
args.max_position_embeddings,
|
|
)
|
|
|
|
def __call__(
|
|
self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
q = self.q_proj(x).reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
k = self.k_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
v = self.v_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
q = self.rope(q, offset=cache.offset)
|
|
k = self.rope(k, offset=cache.offset)
|
|
k, v = cache.update_and_fetch(k, v)
|
|
else:
|
|
q = self.rope(q)
|
|
k = self.rope(k)
|
|
|
|
out = scaled_dot_product_attention(
|
|
q, k, v, cache=cache, scale=self.scale, mask=mask
|
|
)
|
|
out = out.transpose(0, 2, 1, 3).reshape(B, L, D)
|
|
return self.out_proj(out)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.attention = AttentionModule(args)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
dim = args.hidden_size
|
|
hidden_dim = args.intermediate_size
|
|
self.c_fc_0 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias)
|
|
self.c_fc_1 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias)
|
|
self.c_proj = nn.Linear(hidden_dim, dim, bias=args.mlp_bias)
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
return self.c_proj(nn.silu(self.c_fc_0(x)) * self.c_fc_1(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.ln_1 = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
self.attn = Attention(args)
|
|
self.ln_2 = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
self.mlp = MLP(args)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
h = x + self.attn.attention(self.ln_1(x), mask, cache)
|
|
out = h + self.mlp(self.ln_2(h))
|
|
return out
|
|
|
|
|
|
class ExaoneModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.h = [TransformerBlock(args) for _ in range(args.num_layers)]
|
|
self.ln_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
mask: mx.array = None,
|
|
cache=None,
|
|
):
|
|
h = self.wte(inputs)
|
|
if mask is None:
|
|
mask = create_attention_mask(h, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.h)
|
|
|
|
for layer, c in zip(self.h, cache):
|
|
h = layer(h, mask, cache=c)
|
|
|
|
return self.ln_f(h)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.transformer = ExaoneModel(args)
|
|
if not args.tie_word_embeddings:
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
mask: mx.array = None,
|
|
cache=None,
|
|
):
|
|
out = self.transformer(inputs, mask, cache)
|
|
if self.args.tie_word_embeddings:
|
|
out = self.transformer.wte.as_linear(out)
|
|
else:
|
|
out = self.lm_head(out)
|
|
return out
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.transformer.h
|