mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* Update convert.py * Update model.py * Update test.py * Update model.py * Update convert.py * Add files via upload * Update convert.py * format * nit * nit --------- Co-authored-by: Awni Hannun <awni@apple.com>
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
import argparse
|
|
from typing import List
|
|
|
|
import model
|
|
import numpy as np
|
|
from transformers import AutoModel, AutoTokenizer
|
|
|
|
|
|
def run_torch(bert_model: str, batch: List[str]):
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
|
torch_model = AutoModel.from_pretrained(bert_model)
|
|
torch_tokens = tokenizer(batch, return_tensors="pt", padding=True)
|
|
torch_forward = torch_model(**torch_tokens)
|
|
torch_output = torch_forward.last_hidden_state.detach().numpy()
|
|
torch_pooled = torch_forward.pooler_output.detach().numpy()
|
|
return torch_output, torch_pooled
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Run a BERT-like model for a batch of text."
|
|
)
|
|
parser.add_argument(
|
|
"--bert-model",
|
|
type=str,
|
|
default="bert-base-uncased",
|
|
help="The model identifier for a BERT-like model from Hugging Face Transformers.",
|
|
)
|
|
parser.add_argument(
|
|
"--mlx-model",
|
|
type=str,
|
|
default="weights/bert-base-uncased.npz",
|
|
help="The path of the stored MLX BERT weights (npz file).",
|
|
)
|
|
parser.add_argument(
|
|
"--text",
|
|
nargs="+",
|
|
default=["This is an example of BERT working in MLX."],
|
|
help="A batch of texts to process. Multiple texts should be separated by spaces.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
torch_output, torch_pooled = run_torch(args.bert_model, args.text)
|
|
|
|
mlx_output, mlx_pooled = model.run(args.bert_model, args.mlx_model, args.text)
|
|
|
|
if torch_pooled is not None and mlx_pooled is not None:
|
|
assert np.allclose(
|
|
torch_output, mlx_output, rtol=1e-4, atol=1e-5
|
|
), "Model output is different"
|
|
assert np.allclose(
|
|
torch_pooled, mlx_pooled, rtol=1e-4, atol=1e-5
|
|
), "Model pooled output is different"
|
|
print("Tests pass :)")
|
|
else:
|
|
print("Pooled outputs were not compared due to one or both being None.")
|