mlx-examples/clip/clip.py
Gabrijel Boduljak 94358219cf
CLIP (ViT) (#315)
* probably approximatelly correct CLIPTextEncoder

* implemented CLIPEncoderLayer as built-in nn.TransformerEncoderLayer

* replaced embedding layer with simple matrix

* implemented ViT

* added ViT tests

* fixed tests

* added pooler_output for text

* implemented complete CLIPModel

* implemented init

* implemented convert.py and from_pretrained

* fixed some minor bugs and added the README.md

* removed tokenizer unused comments

* removed unused deps

* updated ACKNOWLEDGEMENTS.md

* Feat: Image Processor for CLIP (#1)

@nkasmanoff:
* clip image processor
* added example usage

* refactored image preprocessing

* deleted unused image_config.py

* removed preprocessing port

* added dependency to mlx-data

* fixed attribution and moved photos to assets

* implemented a simple port of CLIPImageProcessor

* review changes

* PR review changes

* renamed too verbose arg

* updated README.md

* nits in readme / conversion

* simplify some stuff, remove unneeded inits

* remove more init stuff

* more simplify

* make test a unit test

* update main readme

* readme nits

---------

Co-authored-by: Noah Kasmanoff <nkasmanoff@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-31 14:19:53 -08:00

32 lines
1022 B
Python

from typing import Tuple
from image_processor import CLIPImageProcessor
from model import CLIPModel
from tokenizer import CLIPTokenizer
def load(model_dir: str) -> Tuple[CLIPModel, CLIPTokenizer, CLIPImageProcessor]:
model = CLIPModel.from_pretrained(model_dir)
tokenizer = CLIPTokenizer.from_pretrained(model_dir)
img_processor = CLIPImageProcessor.from_pretrained(model_dir)
return model, tokenizer, img_processor
if __name__ == "__main__":
from PIL import Image
model, tokenizer, img_processor = load("mlx_model")
inputs = {
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
"pixel_values": img_processor(
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
),
}
output = model(**inputs)
# Get text and image embeddings:
text_embeds = output.text_embeds
image_embeds = output.image_embeds
print("Text embeddings shape:", text_embeds.shape)
print("Image embeddings shape:", image_embeds.shape)