mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

- bert/model.py:10: tree_unflatten - bert/model.py:2: dataclass - bert/model.py:8: numpy - cifar/resnet.py:6: Any - clip/model.py:15: tree_flatten - clip/model.py:9: Union - gcn/main.py:8: download_cora - gcn/main.py:9: cross_entropy - llms/gguf_llm/models.py:12: tree_flatten, tree_unflatten - llms/gguf_llm/models.py:9: numpy - llms/mixtral/mixtral.py:12: tree_map - llms/mlx_lm/models/dbrx.py:2: Dict, Union - llms/mlx_lm/tuner/trainer.py:5: partial - llms/speculative_decoding/decoder.py:1: dataclass, field - llms/speculative_decoding/decoder.py:2: Optional - llms/speculative_decoding/decoder.py:5: mlx.nn - llms/speculative_decoding/decoder.py:6: numpy - llms/speculative_decoding/main.py:2: glob - llms/speculative_decoding/main.py:3: json - llms/speculative_decoding/main.py:5: Path - llms/speculative_decoding/main.py:8: mlx.nn - llms/speculative_decoding/model.py:6: tree_unflatten - llms/speculative_decoding/model.py:7: AutoTokenizer - llms/tests/test_lora.py:13: yaml_loader - lora/lora.py:14: tree_unflatten - lora/models.py:11: numpy - lora/models.py:3: glob - speechcommands/kwt.py:1: Any - speechcommands/main.py:7: mlx.data - stable_diffusion/stable_diffusion/model_io.py:4: partial - whisper/benchmark.py:5: sys - whisper/test.py:5: subprocess - whisper/whisper/audio.py:6: Optional - whisper/whisper/decoding.py:8: mlx.nn
419 lines
14 KiB
Python
419 lines
14 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import glob
|
|
import json
|
|
import logging
|
|
import math
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.core import linalg as LA
|
|
from mlx.nn.losses import cross_entropy
|
|
|
|
|
|
@dataclass
|
|
class CLIPVisionOutput:
|
|
pooler_output: mx.array
|
|
last_hidden_state: mx.array
|
|
hidden_states: Optional[mx.array]
|
|
|
|
|
|
@dataclass
|
|
class CLIPTextOutput:
|
|
pooler_output: mx.array
|
|
last_hidden_state: mx.array
|
|
|
|
|
|
@dataclass
|
|
class CLIPModelOutput:
|
|
loss: Optional[mx.array]
|
|
text_embeds: Optional[mx.array]
|
|
image_embeds: Optional[mx.array]
|
|
text_model_output: CLIPTextOutput
|
|
vision_model_output: CLIPVisionOutput
|
|
|
|
|
|
@dataclass
|
|
class CLIPTextConfig:
|
|
num_hidden_layers: int
|
|
hidden_size: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
max_position_embeddings: int
|
|
vocab_size: int
|
|
layer_norm_eps: float
|
|
|
|
|
|
@dataclass
|
|
class CLIPVisionConfig:
|
|
num_hidden_layers: int
|
|
hidden_size: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
num_channels: int
|
|
image_size: int
|
|
patch_size: int
|
|
layer_norm_eps: float
|
|
|
|
|
|
@dataclass
|
|
class CLIPConfig:
|
|
text_config: CLIPTextConfig
|
|
vision_config: CLIPVisionConfig
|
|
projection_dim: int
|
|
|
|
|
|
def quick_gelu(x: mx.array) -> mx.array:
|
|
"""
|
|
A fast GELU approximation https://github.com/hendrycks/GELUs
|
|
"""
|
|
return x * mx.sigmoid(1.702 * x)
|
|
|
|
|
|
def clip_loss(logits: mx.array) -> mx.array:
|
|
N, M = logits.shape
|
|
caption_loss = cross_entropy(logits, mx.arange(N), reduction="mean")
|
|
image_loss = cross_entropy(logits.T, mx.arange(M), reduction="mean")
|
|
return (caption_loss + image_loss) / 2.0
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims: int,
|
|
num_heads: int,
|
|
query_input_dims: Optional[int] = None,
|
|
key_input_dims: Optional[int] = None,
|
|
value_input_dims: Optional[int] = None,
|
|
value_dims: Optional[int] = None,
|
|
value_output_dims: Optional[int] = None,
|
|
bias: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
if (dims % num_heads) != 0:
|
|
raise ValueError(
|
|
"The input feature dimensions should be divisible by the "
|
|
f"number of heads ({dims} % {num_heads}) != 0"
|
|
)
|
|
|
|
query_input_dims = query_input_dims or dims
|
|
key_input_dims = key_input_dims or dims
|
|
value_input_dims = value_input_dims or key_input_dims
|
|
value_dims = value_dims or dims
|
|
value_output_dims = value_output_dims or dims
|
|
|
|
self.num_heads = num_heads
|
|
self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
|
|
self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
|
|
self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
|
|
self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
|
|
|
|
def __call__(self, queries, keys, values, mask=None):
|
|
queries = self.q_proj(queries)
|
|
keys = self.k_proj(keys)
|
|
values = self.v_proj(values)
|
|
|
|
num_heads = self.num_heads
|
|
B, L, D = queries.shape
|
|
_, S, _ = keys.shape
|
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
|
|
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
scores = (queries * scale) @ keys
|
|
if mask is not None:
|
|
scores = scores + mask.astype(scores.dtype)
|
|
scores = mx.softmax(scores, axis=-1)
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.out_proj(values_hat)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config: CLIPTextConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = quick_gelu
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
x = self.activation_fn(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class EncoderLayer(nn.Module):
|
|
"""The transformer encoder layer from CLIP."""
|
|
|
|
def __init__(self, config: CLIPTextConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
# Add biases to the attention projections
|
|
self.self_attn = Attention(
|
|
config.hidden_size, config.num_attention_heads, bias=True
|
|
)
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.mlp = MLP(config)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
y = self.layer_norm1(x)
|
|
y = self.self_attn(y, y, y, mask)
|
|
x = x + y
|
|
y = self.layer_norm2(x)
|
|
y = self.mlp(y)
|
|
return x + y
|
|
|
|
|
|
class TextEmbeddings(nn.Module):
|
|
def __init__(self, config: CLIPTextConfig):
|
|
super().__init__()
|
|
embed_dim = config.hidden_size
|
|
|
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
|
self.position_embedding = nn.Embedding(
|
|
config.max_position_embeddings, embed_dim
|
|
)
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
embeddings = self.token_embedding(x)
|
|
embeddings += self.position_embedding.weight[: x.shape[1]]
|
|
return embeddings
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(self, config: CLIPTextConfig):
|
|
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
|
|
|
|
|
class ClipTextModel(nn.Module):
|
|
"""Implements the text encoder transformer from CLIP."""
|
|
|
|
def __init__(self, config: CLIPTextConfig):
|
|
super().__init__()
|
|
self.embeddings = TextEmbeddings(config)
|
|
self.encoder = Encoder(config)
|
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def __call__(self, x: mx.array) -> CLIPTextOutput:
|
|
B, N = x.shape
|
|
eot_tokens = mx.argmax(x, axis=-1)
|
|
x = self.embeddings(x)
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
|
|
for l in self.encoder.layers:
|
|
x = l(x, mask)
|
|
last_hidden_state = self.final_layer_norm(x)
|
|
pooler_output = last_hidden_state[mx.arange(B), eot_tokens]
|
|
|
|
return CLIPTextOutput(
|
|
pooler_output=pooler_output, last_hidden_state=last_hidden_state
|
|
)
|
|
|
|
|
|
class VisionEmbeddings(nn.Module):
|
|
def __init__(self, config: CLIPVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.class_embedding = mx.zeros((config.hidden_size,))
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
bias=False,
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches + 1
|
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
batch_size = x.shape[0]
|
|
# Patchify using conv:
|
|
# [batch_size, sqrt(num_patches), sqrt(num_patches), embed_dim]
|
|
patch_embeddings = self.patch_embedding(x)
|
|
# [batch_size, num_patches, embed_dim]
|
|
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
|
embed_dim = patch_embeddings.shape[-1]
|
|
# Prepend <CLS> embeddings
|
|
# [batch_size, 1, embed_dim]
|
|
cls_embeddings = mx.broadcast_to(
|
|
self.class_embedding, (batch_size, 1, embed_dim)
|
|
)
|
|
# [batch_size, num_patches + 1, embed_dim]
|
|
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
|
|
# Add positional encoding
|
|
embeddings += self.position_embedding.weight
|
|
return embeddings
|
|
|
|
|
|
class ClipVisionModel(nn.Module):
|
|
"""Implements the vision encoder transformer from CLIP."""
|
|
|
|
def __init__(self, config: CLIPVisionConfig):
|
|
super().__init__()
|
|
self.embeddings = VisionEmbeddings(config)
|
|
self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
|
|
self.encoder = Encoder(config)
|
|
self.post_layernorm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
output_hidden_states: Optional[bool] = None,
|
|
) -> CLIPVisionOutput:
|
|
x = self.embeddings(x)
|
|
x = self.pre_layrnorm(x)
|
|
|
|
encoder_states = (x,) if output_hidden_states else None
|
|
|
|
for l in self.encoder.layers:
|
|
x = l(x, mask=None)
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (x,)
|
|
|
|
# Extract <CLS> token embedding
|
|
pooler_output = self.post_layernorm(x[:, 0, :])
|
|
return CLIPVisionOutput(
|
|
pooler_output=pooler_output,
|
|
last_hidden_state=x,
|
|
hidden_states=encoder_states,
|
|
)
|
|
|
|
|
|
class CLIPModel(nn.Module):
|
|
def __init__(self, config: CLIPConfig):
|
|
self.text_model = ClipTextModel(config.text_config)
|
|
self.vision_model = ClipVisionModel(config.vision_config)
|
|
|
|
text_embed_dim = config.text_config.hidden_size
|
|
vision_embed_dim = config.vision_config.hidden_size
|
|
projection_dim = config.projection_dim
|
|
|
|
self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
|
|
self.text_projection = nn.Linear(text_embed_dim, projection_dim, bias=False)
|
|
self.logit_scale = mx.array(0.0)
|
|
|
|
def get_text_features(self, x: mx.array) -> mx.array:
|
|
return self.text_projection(self.text_model(x).pooler_output)
|
|
|
|
def get_image_features(self, x: mx.array) -> mx.array:
|
|
return self.visual_projection(self.vision_model(x).pooler_output)
|
|
|
|
def __call__(
|
|
self,
|
|
input_ids: Optional[mx.array] = None,
|
|
pixel_values: Optional[mx.array] = None,
|
|
return_loss=False,
|
|
) -> CLIPModelOutput:
|
|
if input_ids is not None:
|
|
text_model_output = self.text_model(input_ids)
|
|
text_embeds = self.text_projection(text_model_output.pooler_output)
|
|
text_embeds = text_embeds / LA.norm(text_embeds, axis=-1, keepdims=True)
|
|
else:
|
|
text_embeds = None
|
|
text_model_output = None
|
|
|
|
if pixel_values is not None:
|
|
vision_model_output = self.vision_model(pixel_values)
|
|
image_embeds = self.visual_projection(vision_model_output.pooler_output)
|
|
image_embeds = image_embeds / LA.norm(image_embeds, axis=-1, keepdims=True)
|
|
else:
|
|
image_embeds = None
|
|
vision_model_output = None
|
|
|
|
if return_loss and (input_ids is None or pixel_values is None):
|
|
raise ValueError("Must provide text and image inputs to compute loss.")
|
|
|
|
if return_loss:
|
|
logit_scale = mx.exp(self.logit_scale)
|
|
logits = (text_embeds @ image_embeds.T) * logit_scale
|
|
loss = clip_loss(logits)
|
|
else:
|
|
loss = None
|
|
|
|
return CLIPModelOutput(
|
|
loss=loss,
|
|
text_embeds=text_embeds,
|
|
image_embeds=image_embeds,
|
|
vision_model_output=vision_model_output,
|
|
text_model_output=text_model_output,
|
|
)
|
|
|
|
@staticmethod
|
|
def from_pretrained(path: str):
|
|
path = Path(path)
|
|
|
|
with open(path / "config.json", "r") as fid:
|
|
config = json.load(fid)
|
|
|
|
text_config = config["text_config"]
|
|
text_config = CLIPTextConfig(
|
|
num_hidden_layers=text_config["num_hidden_layers"],
|
|
hidden_size=text_config["hidden_size"],
|
|
intermediate_size=text_config["intermediate_size"],
|
|
num_attention_heads=text_config["num_attention_heads"],
|
|
max_position_embeddings=text_config["max_position_embeddings"],
|
|
vocab_size=text_config["vocab_size"],
|
|
layer_norm_eps=text_config["layer_norm_eps"],
|
|
)
|
|
|
|
vision_config = config["vision_config"]
|
|
|
|
vision_config = CLIPVisionConfig(
|
|
num_hidden_layers=vision_config["num_hidden_layers"],
|
|
hidden_size=vision_config["hidden_size"],
|
|
intermediate_size=vision_config["intermediate_size"],
|
|
num_attention_heads=vision_config["num_attention_heads"],
|
|
num_channels=3,
|
|
image_size=vision_config["image_size"],
|
|
patch_size=vision_config["patch_size"],
|
|
layer_norm_eps=vision_config["layer_norm_eps"],
|
|
)
|
|
|
|
config = CLIPConfig(
|
|
text_config=text_config,
|
|
vision_config=vision_config,
|
|
projection_dim=config["projection_dim"],
|
|
)
|
|
model = CLIPModel(config)
|
|
weight_files = glob.glob(str(path / "*.safetensors"))
|
|
if not weight_files:
|
|
logging.error(f"No safetensors found in {path}")
|
|
raise FileNotFoundError(f"No safetensors found in {path}")
|
|
|
|
weights = {}
|
|
for wf in weight_files:
|
|
weights.update(mx.load(wf))
|
|
|
|
weights = model.sanitize(weights)
|
|
model.load_weights(list(weights.items()))
|
|
return model
|
|
|
|
@staticmethod
|
|
def sanitize(weights):
|
|
sanitized_weights = {}
|
|
for k, v in weights.items():
|
|
if "position_ids" in k:
|
|
# Remove unused position_ids
|
|
continue
|
|
elif "patch_embedding.weight" in k:
|
|
# pytorch conv2d expects the weight tensor to be of shape [out_channels, in_channels, kH, KW]
|
|
# mlx conv2d expects the weight tensor to be of shape [out_channels, kH, KW, in_channels]
|
|
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
else:
|
|
sanitized_weights[k] = v
|
|
|
|
return sanitized_weights
|