mlx-examples/llms/mistral/test.py
Awni Hannun 27c0a8c002
Add llms subdir + update README (#145)
* add llms subdir + update README

* nits

* use same pre-commit as mlx

* update readmes a bit

* format
2023-12-20 10:22:25 -08:00

118 lines
3.1 KiB
Python

# Copyright © 2023 Apple Inc.
import unittest
import mistral
import mlx.core as mx
from mlx.utils import tree_map
class TestMistral(unittest.TestCase):
def test_model(self):
vocab_size = 100
L = 32
args = mistral.ModelArgs(
dim=128,
n_layers=2,
head_dim=32,
hidden_dim=256,
n_heads=4,
n_kv_heads=4,
norm_eps=1e-3,
vocab_size=vocab_size,
)
model = mistral.Mistral(args)
inputs = mx.random.randint(0, vocab_size, (L,))
logits, cache = model(inputs[None])
self.assertEqual(logits.shape, [1, L, vocab_size])
self.assertEqual(logits.dtype, mx.float32)
self.assertEqual(len(cache), args.n_layers)
params = tree_map(lambda p: p.astype(mx.float16), model.parameters())
model.update(params)
logits, _ = model(inputs[None])
self.assertEqual(logits.dtype, mx.float16)
def test_generate(self):
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
prompt = mx.array(tokenizer.encode("This is a test"))
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(30))]
mx.eval(tokens)
tokens = [t.item() for t in tokens]
expected = [
302,
272,
11843,
11837,
1587,
28723,
851,
349,
865,
264,
1369,
28723,
13,
13,
3381,
456,
654,
264,
1353,
11843,
28725,
368,
682,
347,
2240,
767,
298,
511,
28723,
13,
]
self.assertEqual(tokens, expected)
def benchmark(self):
import time
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
prompt = mx.random.randint(0, model.vocab_size, (128,))
# warmup
for _ in range(2):
generator = mistral.generate(prompt, model)
mx.eval(next(generator))
tic = time.time()
its = 5
for _ in range(its):
generator = mistral.generate(prompt, model)
mx.eval(next(generator))
toc = time.time()
tps = its * prompt.size / (toc - tic)
print(f"Prompt processing: {tps:.2f} tokens per second")
# warmup
for _ in range(2):
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(101))]
mx.eval(tokens)
time_total = 0.0
its = 2
for _ in range(its):
generator = mistral.generate(prompt, model)
mx.eval(next(generator))
tic = time.time()
tokens = [t for t, _ in zip(generator, range(100))]
mx.eval(tokens)
time_total += time.time() - tic
tps = len(tokens) * its / time_total
print(f"Token generation: {tps:.3f} tokens per second")
if __name__ == "__main__":
unittest.main()