mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* add llms subdir + update README * nits * use same pre-commit as mlx * update readmes a bit * format
118 lines
3.1 KiB
Python
118 lines
3.1 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import unittest
|
|
|
|
import mistral
|
|
import mlx.core as mx
|
|
from mlx.utils import tree_map
|
|
|
|
|
|
class TestMistral(unittest.TestCase):
|
|
def test_model(self):
|
|
vocab_size = 100
|
|
L = 32
|
|
args = mistral.ModelArgs(
|
|
dim=128,
|
|
n_layers=2,
|
|
head_dim=32,
|
|
hidden_dim=256,
|
|
n_heads=4,
|
|
n_kv_heads=4,
|
|
norm_eps=1e-3,
|
|
vocab_size=vocab_size,
|
|
)
|
|
|
|
model = mistral.Mistral(args)
|
|
inputs = mx.random.randint(0, vocab_size, (L,))
|
|
logits, cache = model(inputs[None])
|
|
self.assertEqual(logits.shape, [1, L, vocab_size])
|
|
self.assertEqual(logits.dtype, mx.float32)
|
|
self.assertEqual(len(cache), args.n_layers)
|
|
|
|
params = tree_map(lambda p: p.astype(mx.float16), model.parameters())
|
|
model.update(params)
|
|
logits, _ = model(inputs[None])
|
|
self.assertEqual(logits.dtype, mx.float16)
|
|
|
|
def test_generate(self):
|
|
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
|
|
prompt = mx.array(tokenizer.encode("This is a test"))
|
|
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(30))]
|
|
mx.eval(tokens)
|
|
tokens = [t.item() for t in tokens]
|
|
expected = [
|
|
302,
|
|
272,
|
|
11843,
|
|
11837,
|
|
1587,
|
|
28723,
|
|
851,
|
|
349,
|
|
865,
|
|
264,
|
|
1369,
|
|
28723,
|
|
13,
|
|
13,
|
|
3381,
|
|
456,
|
|
654,
|
|
264,
|
|
1353,
|
|
11843,
|
|
28725,
|
|
368,
|
|
682,
|
|
347,
|
|
2240,
|
|
767,
|
|
298,
|
|
511,
|
|
28723,
|
|
13,
|
|
]
|
|
self.assertEqual(tokens, expected)
|
|
|
|
def benchmark(self):
|
|
import time
|
|
|
|
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
|
|
prompt = mx.random.randint(0, model.vocab_size, (128,))
|
|
|
|
# warmup
|
|
for _ in range(2):
|
|
generator = mistral.generate(prompt, model)
|
|
mx.eval(next(generator))
|
|
|
|
tic = time.time()
|
|
its = 5
|
|
for _ in range(its):
|
|
generator = mistral.generate(prompt, model)
|
|
mx.eval(next(generator))
|
|
toc = time.time()
|
|
tps = its * prompt.size / (toc - tic)
|
|
print(f"Prompt processing: {tps:.2f} tokens per second")
|
|
|
|
# warmup
|
|
for _ in range(2):
|
|
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(101))]
|
|
mx.eval(tokens)
|
|
|
|
time_total = 0.0
|
|
its = 2
|
|
for _ in range(its):
|
|
generator = mistral.generate(prompt, model)
|
|
mx.eval(next(generator))
|
|
tic = time.time()
|
|
tokens = [t for t, _ in zip(generator, range(100))]
|
|
mx.eval(tokens)
|
|
time_total += time.time() - tic
|
|
|
|
tps = len(tokens) * its / time_total
|
|
print(f"Token generation: {tps:.3f} tokens per second")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|