mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* Made mypy compatible * reformatted * Added more fixes * Added fixes to speculative-decoding * Fixes * fix circle * revert some stuff --------- Co-authored-by: Awni Hannun <awni@apple.com>
327 lines
12 KiB
Python
327 lines
12 KiB
Python
from typing import List, Optional, Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
from mlx.utils import tree_map
|
|
from transformers import T5Config
|
|
|
|
|
|
def _relative_position_bucket(
|
|
relative_position, bidirectional=True, num_buckets=32, max_distance=128
|
|
):
|
|
"""
|
|
Adapted from HF Tensorflow:
|
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
|
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
|
|
Args:
|
|
relative_position: an int32 Tensor
|
|
bidirectional: a boolean - whether the attention is bidirectional
|
|
num_buckets: an integer
|
|
max_distance: an integer
|
|
|
|
Returns:
|
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
"""
|
|
relative_buckets = 0
|
|
if bidirectional:
|
|
num_buckets //= 2
|
|
relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets
|
|
relative_position = mx.abs(relative_position)
|
|
else:
|
|
relative_position = -mx.minimum(
|
|
relative_position, mx.zeros_like(relative_position)
|
|
)
|
|
# now relative_position is in the range [0, inf)
|
|
|
|
# half of the buckets are for exact increments in positions
|
|
max_exact = num_buckets // 2
|
|
is_small = relative_position < max_exact
|
|
|
|
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
|
scale = (num_buckets - max_exact) / np.log(max_distance / max_exact)
|
|
relative_position_if_large = max_exact + (
|
|
mx.log(relative_position.astype(mx.float32) / max_exact) * scale
|
|
).astype(mx.int16)
|
|
relative_position_if_large = mx.minimum(relative_position_if_large, num_buckets - 1)
|
|
relative_buckets += mx.where(
|
|
is_small, relative_position, relative_position_if_large
|
|
)
|
|
return relative_buckets
|
|
|
|
|
|
class RelativePositionBias(nn.Module):
|
|
def __init__(self, config: T5Config, bidirectional: bool):
|
|
self.bidirectional = bidirectional
|
|
self.num_buckets = config.relative_attention_num_buckets
|
|
self.max_distance = config.relative_attention_max_distance
|
|
self.n_heads = config.num_heads
|
|
self.embeddings = nn.Embedding(
|
|
config.relative_attention_num_buckets, config.num_heads
|
|
)
|
|
|
|
def __call__(self, query_length: int, key_length: int, offset: int = 0):
|
|
"""Compute binned relative position bias"""
|
|
context_position = mx.arange(offset, query_length)[:, None]
|
|
memory_position = mx.arange(key_length)[None, :]
|
|
|
|
# shape (query_length, key_length)
|
|
relative_position = memory_position - context_position
|
|
relative_position_bucket = _relative_position_bucket(
|
|
relative_position,
|
|
bidirectional=self.bidirectional,
|
|
num_buckets=self.num_buckets,
|
|
max_distance=self.max_distance,
|
|
)
|
|
|
|
# shape (query_length, key_length, num_heads)
|
|
values = self.embeddings(relative_position_bucket)
|
|
|
|
# shape (num_heads, query_length, key_length)
|
|
return values.transpose(2, 0, 1)
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
super().__init__()
|
|
inner_dim = config.d_kv * config.num_heads
|
|
self.num_heads = config.num_heads
|
|
self.query_proj = nn.Linear(config.d_model, inner_dim, bias=False)
|
|
self.key_proj = nn.Linear(config.d_model, inner_dim, bias=False)
|
|
self.value_proj = nn.Linear(config.d_model, inner_dim, bias=False)
|
|
self.out_proj = nn.Linear(inner_dim, config.d_model, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
queries: mx.array,
|
|
keys: mx.array,
|
|
values: mx.array,
|
|
mask: Optional[mx.array],
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
|
|
queries = self.query_proj(queries)
|
|
keys = self.key_proj(keys)
|
|
values = self.value_proj(values)
|
|
|
|
num_heads = self.num_heads
|
|
B, L, _ = queries.shape
|
|
_, S, _ = keys.shape
|
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
|
|
# Dimensions are [batch x num heads x sequence x hidden dim]
|
|
scores = queries @ keys.transpose(0, 1, 3, 2)
|
|
if mask is not None:
|
|
scores = scores + mask.astype(scores.dtype)
|
|
|
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.out_proj(values_hat), (keys, values)
|
|
|
|
|
|
class DenseActivation(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
super().__init__()
|
|
mlp_dims = config.d_ff or config.d_model * 4
|
|
self.gated = config.feed_forward_proj.startswith("gated")
|
|
if self.gated:
|
|
self.wi_0 = nn.Linear(config.d_model, mlp_dims, bias=False)
|
|
self.wi_1 = nn.Linear(config.d_model, mlp_dims, bias=False)
|
|
else:
|
|
self.wi = nn.Linear(config.d_model, mlp_dims, bias=False)
|
|
self.wo = nn.Linear(mlp_dims, config.d_model, bias=False)
|
|
activation = config.feed_forward_proj.removeprefix("gated-")
|
|
if activation == "relu":
|
|
self.act = nn.relu
|
|
elif activation == "gelu":
|
|
self.act = nn.gelu
|
|
elif activation == "silu":
|
|
self.act = nn.silu
|
|
else:
|
|
raise ValueError(f"Unknown activation: {activation}")
|
|
|
|
def __call__(self, x):
|
|
if self.gated:
|
|
hidden_act = self.act(self.wi_0(x))
|
|
hidden_linear = self.wi_1(x)
|
|
x = hidden_act * hidden_linear
|
|
else:
|
|
x = self.act(self.wi(x))
|
|
return self.wo(x)
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
super().__init__()
|
|
self.attention = MultiHeadAttention(config)
|
|
self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.ln2 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.dense = DenseActivation(config)
|
|
|
|
def __call__(self, x, mask):
|
|
y = self.ln1(x)
|
|
y, _ = self.attention(y, y, y, mask=mask)
|
|
x = x + y
|
|
|
|
y = self.ln2(x)
|
|
y = self.dense(y)
|
|
return x + y
|
|
|
|
|
|
class TransformerEncoder(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
super().__init__()
|
|
self.layers = [
|
|
TransformerEncoderLayer(config) for i in range(config.num_layers)
|
|
]
|
|
self.ln = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.relative_attention_bias = RelativePositionBias(config, bidirectional=True)
|
|
|
|
def __call__(self, x: mx.array):
|
|
pos_bias = self.relative_attention_bias(x.shape[1], x.shape[1])
|
|
for layer in self.layers:
|
|
x = layer(x, mask=pos_bias)
|
|
return self.ln(x)
|
|
|
|
|
|
class TransformerDecoderLayer(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
super().__init__()
|
|
self.self_attention = MultiHeadAttention(config)
|
|
self.cross_attention = MultiHeadAttention(config)
|
|
self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.ln2 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.ln3 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.dense = DenseActivation(config)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
memory: mx.array,
|
|
mask: mx.array,
|
|
memory_mask: mx.array,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
|
|
y = self.ln1(x)
|
|
y, new_cache = self.self_attention(y, y, y, mask, cache)
|
|
x = x + y
|
|
|
|
y = self.ln2(x)
|
|
y, _ = self.cross_attention(y, memory, memory, memory_mask)
|
|
x = x + y
|
|
|
|
y = self.ln3(x)
|
|
y = self.dense(y)
|
|
x = x + y
|
|
|
|
return x, new_cache
|
|
|
|
|
|
def create_additive_causal_mask(N: int, offset: int = 0):
|
|
rinds = mx.arange(offset + N)
|
|
linds = mx.arange(offset, offset + N) if offset else rinds
|
|
mask = linds[:, None] < rinds[None]
|
|
return mask * -1e9
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
super().__init__()
|
|
n_layers = getattr(config, "num_decoder_layers", config.num_layers)
|
|
self.layers = [TransformerDecoderLayer(config) for i in range(n_layers)]
|
|
self.ln = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.relative_attention_bias = RelativePositionBias(config, bidirectional=False)
|
|
|
|
def __call__(self, x, memory, cache=None):
|
|
if cache[0] is not None:
|
|
offset = cache[0][0].shape[2]
|
|
else:
|
|
offset = 0
|
|
|
|
T = x.shape[1]
|
|
if T > 1:
|
|
mask = create_additive_causal_mask(T, offset)
|
|
else:
|
|
mask = None
|
|
|
|
pos_bias = self.relative_attention_bias(T + offset, T + offset, offset=offset)
|
|
if mask is not None:
|
|
mask += pos_bias
|
|
else:
|
|
mask = pos_bias
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
x, cache[e] = layer(x, memory, mask, None, cache=cache[e])
|
|
x = self.ln(x)
|
|
|
|
return x, cache
|
|
|
|
|
|
class OutputHead(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
self.linear = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
|
|
|
def __call__(self, inputs):
|
|
return self.linear(inputs)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, config: T5Config):
|
|
self.wte = nn.Embedding(config.vocab_size, config.d_model)
|
|
self.encoder = TransformerEncoder(config)
|
|
self.decoder = TransformerDecoder(config)
|
|
self.tie_word_embeddings = config.tie_word_embeddings
|
|
if not self.tie_word_embeddings:
|
|
self.lm_head = OutputHead(config)
|
|
self.model_dim = config.d_model
|
|
self.reset_cache()
|
|
|
|
def encode(self, inputs: mx.array):
|
|
return self.encoder(self.wte(inputs))
|
|
|
|
def truncate_cache(self, num_to_truncate):
|
|
if num_to_truncate <= 0:
|
|
return
|
|
cache_length = self.cache[0][0].shape[2]
|
|
if num_to_truncate < cache_length:
|
|
self.cache = tree_map(lambda x: x[:, :, :-num_to_truncate, :], self.cache)
|
|
else:
|
|
self.reset_cache()
|
|
|
|
def reset_cache(self):
|
|
self.cache = [None] * len(self.decoder.layers)
|
|
|
|
def decode(
|
|
self,
|
|
inputs: mx.array,
|
|
memory: mx.array,
|
|
):
|
|
inputs = self.wte(inputs)
|
|
y, self.cache = self.decoder(inputs, memory=memory, cache=self.cache)
|
|
if not self.tie_word_embeddings:
|
|
y *= self.model_dim**-0.5
|
|
y = self.lm_head(y)
|
|
else:
|
|
y = y @ self.wte.weight.T
|
|
return y
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
decoder_inputs: mx.array,
|
|
):
|
|
return self.decode(decoder_inputs, self.encode(inputs))[0]
|