mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* Made mypy compatible * reformatted * Added more fixes * Added fixes to speculative-decoding * Fixes * fix circle * revert some stuff --------- Co-authored-by: Awni Hannun <awni@apple.com>
276 lines
8.6 KiB
Python
276 lines
8.6 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import inspect
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Dict, Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
hidden_size: int
|
|
num_hidden_layers: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
rms_norm_eps: float
|
|
vocab_size: int
|
|
num_key_value_heads: Optional[int] = None
|
|
rope_theta: float = 10000
|
|
rope_traditional: bool = False
|
|
model_type: Optional[str] = None
|
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
if self.rope_scaling:
|
|
required_keys = {"factor", "type"}
|
|
if not all(key in self.rope_scaling for key in required_keys):
|
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
|
|
if self.rope_scaling["type"] != "linear":
|
|
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
|
|
|
@classmethod
|
|
def from_dict(cls, params):
|
|
return cls(
|
|
**{
|
|
k: v
|
|
for k, v in params.items()
|
|
if k in inspect.signature(cls).parameters
|
|
}
|
|
)
|
|
|
|
|
|
class LoRALinear(nn.Module):
|
|
@staticmethod
|
|
def from_linear(linear: nn.Linear, rank: int = 8):
|
|
# TODO remove when input_dims and output_dims are attributes
|
|
# on linear and quantized linear
|
|
output_dims, input_dims = linear.weight.shape
|
|
if isinstance(linear, nn.QuantizedLinear):
|
|
input_dims *= 32 // linear.bits
|
|
lora_lin = LoRALinear(input_dims, output_dims, rank)
|
|
lora_lin.linear = linear
|
|
return lora_lin
|
|
|
|
def to_linear(self):
|
|
linear = self.linear
|
|
bias = "bias" in linear
|
|
weight = linear.weight
|
|
is_quantized = isinstance(linear, nn.QuantizedLinear)
|
|
|
|
# Use the same type as the linear weight if not quantized
|
|
dtype = weight.dtype
|
|
|
|
if is_quantized:
|
|
dtype = mx.float16
|
|
weight = mx.dequantize(
|
|
weight,
|
|
linear.scales,
|
|
linear.biases,
|
|
linear.group_size,
|
|
linear.bits,
|
|
)
|
|
output_dims, input_dims = weight.shape
|
|
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
|
|
|
|
lora_b = (self.scale * self.lora_b.T).astype(dtype)
|
|
lora_a = self.lora_a.T.astype(dtype)
|
|
fused_linear.weight = weight + lora_b @ lora_a
|
|
if bias:
|
|
fused_linear.bias = linear.bias
|
|
|
|
if is_quantized:
|
|
fused_linear = nn.QuantizedLinear.from_linear(
|
|
fused_linear,
|
|
linear.group_size,
|
|
linear.bits,
|
|
)
|
|
|
|
return fused_linear
|
|
|
|
def __init__(
|
|
self,
|
|
input_dims: int,
|
|
output_dims: int,
|
|
lora_rank: int = 8,
|
|
bias: bool = False,
|
|
scale: float = 20.0,
|
|
):
|
|
super().__init__()
|
|
|
|
# Regular linear layer weights
|
|
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
|
|
|
|
# Scale for low-rank update
|
|
self.scale = scale
|
|
|
|
# Low rank lora weights
|
|
scale = 1 / math.sqrt(input_dims)
|
|
self.lora_a = mx.random.uniform(
|
|
low=-scale,
|
|
high=scale,
|
|
shape=(input_dims, lora_rank),
|
|
)
|
|
self.lora_b = mx.zeros(shape=(lora_rank, output_dims))
|
|
|
|
def __call__(self, x):
|
|
dtype = self.linear.weight.dtype
|
|
if isinstance(self.linear, nn.QuantizedLinear):
|
|
dtype = self.linear.scales.dtype
|
|
y = self.linear(x.astype(dtype))
|
|
z = (x @ self.lora_a) @ self.lora_b
|
|
return y + self.scale * z
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
dim = args.hidden_size
|
|
self.n_heads = n_heads = args.num_attention_heads
|
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
|
|
self.repeats = n_heads // n_kv_heads
|
|
|
|
head_dim = args.hidden_size // n_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
rope_scale = (
|
|
1 / float(args.rope_scaling["factor"])
|
|
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
|
else 1
|
|
)
|
|
self.rope = nn.RoPE(
|
|
head_dim,
|
|
traditional=args.rope_traditional,
|
|
base=args.rope_theta,
|
|
scale=rope_scale,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.o_proj(output), (keys, values)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, dim, hidden_dim):
|
|
super().__init__()
|
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.num_attention_heads = args.num_attention_heads
|
|
self.hidden_size = args.hidden_size
|
|
self.self_attn = Attention(args)
|
|
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
|
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.post_attention_layernorm = nn.RMSNorm(
|
|
args.hidden_size, eps=args.rms_norm_eps
|
|
)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> mx.array:
|
|
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
h = x + r
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
out = h + r
|
|
return out, cache
|
|
|
|
|
|
class LlamaModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.vocab_size = args.vocab_size
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
assert self.vocab_size > 0
|
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [
|
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
]
|
|
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
h = self.embed_tokens(inputs)
|
|
|
|
mask = None
|
|
if h.shape[1] > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
|
mask = mask.astype(h.dtype)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
h, cache[e] = layer(h, mask, cache[e])
|
|
|
|
return self.norm(h), cache
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.model = LlamaModel(args)
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out, cache = self.model(inputs, cache)
|
|
return self.lm_head(out), cache
|