mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* update a few examples to use compile * update mnist * add compile to vae and rename some stuff for simplicity * update reqs * use state in eval * GCN example with RNG + dropout * add a bit of prefetching
105 lines
2.7 KiB
Python
105 lines
2.7 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import argparse
|
|
import time
|
|
from functools import partial
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import mlx.optimizers as optim
|
|
import numpy as np
|
|
|
|
import mnist
|
|
|
|
|
|
class MLP(nn.Module):
|
|
"""A simple MLP."""
|
|
|
|
def __init__(
|
|
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
|
|
):
|
|
super().__init__()
|
|
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
|
|
self.layers = [
|
|
nn.Linear(idim, odim)
|
|
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
|
|
]
|
|
|
|
def __call__(self, x):
|
|
for l in self.layers[:-1]:
|
|
x = nn.relu(l(x))
|
|
return self.layers[-1](x)
|
|
|
|
|
|
def loss_fn(model, X, y):
|
|
return nn.losses.cross_entropy(model(X), y, reduction="mean")
|
|
|
|
|
|
def batch_iterate(batch_size, X, y):
|
|
perm = mx.array(np.random.permutation(y.size))
|
|
for s in range(0, y.size, batch_size):
|
|
ids = perm[s : s + batch_size]
|
|
yield X[ids], y[ids]
|
|
|
|
|
|
def main(args):
|
|
seed = 0
|
|
num_layers = 2
|
|
hidden_dim = 32
|
|
num_classes = 10
|
|
batch_size = 256
|
|
num_epochs = 10
|
|
learning_rate = 1e-1
|
|
|
|
np.random.seed(seed)
|
|
|
|
# Load the data
|
|
train_images, train_labels, test_images, test_labels = map(
|
|
mx.array, getattr(mnist, args.dataset)()
|
|
)
|
|
|
|
# Load the model
|
|
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes)
|
|
mx.eval(model.parameters())
|
|
|
|
optimizer = optim.SGD(learning_rate=learning_rate)
|
|
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
|
|
|
@partial(mx.compile, inputs=model.state, outputs=model.state)
|
|
def step(X, y):
|
|
loss, grads = loss_and_grad_fn(model, X, y)
|
|
optimizer.update(model, grads)
|
|
return loss
|
|
|
|
@partial(mx.compile, inputs=model.state)
|
|
def eval_fn(X, y):
|
|
return mx.mean(mx.argmax(model(X), axis=1) == y)
|
|
|
|
for e in range(num_epochs):
|
|
tic = time.perf_counter()
|
|
for X, y in batch_iterate(batch_size, train_images, train_labels):
|
|
step(X, y)
|
|
mx.eval(model.state)
|
|
accuracy = eval_fn(test_images, test_labels)
|
|
toc = time.perf_counter()
|
|
print(
|
|
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"
|
|
f" Time {toc - tic:.3f} (s)"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("Train a simple MLP on MNIST with MLX.")
|
|
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
default="mnist",
|
|
choices=["mnist", "fashion_mnist"],
|
|
help="The dataset to use.",
|
|
)
|
|
args = parser.parse_args()
|
|
if not args.gpu:
|
|
mx.set_default_device(mx.cpu)
|
|
main(args)
|