mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* transformer_lm: add --dataset enwik8 * nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
128 lines
3.8 KiB
Python
128 lines
3.8 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import io
|
|
import itertools
|
|
import os
|
|
import zipfile
|
|
from urllib import request
|
|
|
|
import numpy as np
|
|
|
|
|
|
def load_dataset(dataname):
|
|
if dataname == "enwik8":
|
|
return enwik8()
|
|
elif dataname == "ptb":
|
|
return ptb()
|
|
elif dataname == "wikitext2":
|
|
return wikitext(dataset="2")
|
|
else:
|
|
return wikitext(dataset="103")
|
|
|
|
|
|
def _load(save_dir, filenames):
|
|
# *NB* First file is expected to be the training set
|
|
with open(os.path.join(save_dir, filenames[0]), "r") as fid:
|
|
vocab = set(t for l in fid.readlines() for t in l.strip().split(" "))
|
|
eos = "<eos>"
|
|
vocab.add(eos)
|
|
vocab = {v: i for i, v in enumerate(vocab)}
|
|
|
|
def to_array(dataset):
|
|
with open(os.path.join(save_dir, dataset), "r") as fid:
|
|
lines = (l.strip().split(" ") for l in fid.readlines())
|
|
return np.array(
|
|
[vocab[w] for line in lines for w in itertools.chain(line, [eos])],
|
|
dtype=np.uint32,
|
|
)
|
|
|
|
datasets = [to_array(fn) for fn in filenames]
|
|
return vocab, *datasets
|
|
|
|
|
|
def wikitext(dataset="2", save_dir="/tmp"):
|
|
"""
|
|
Load the WikiText-* language modeling dataset:
|
|
https://paperswithcode.com/dataset/wikitext-2
|
|
https://paperswithcode.com/dataset/wikitext-103
|
|
|
|
"""
|
|
if dataset not in ("2", "103"):
|
|
raise ValueError(f'Dataset must be either "2" or "103", got {dataset}')
|
|
|
|
filenames = ["wiki.train.tokens", "wiki.valid.tokens", "wiki.test.tokens"]
|
|
dataname = f"wikitext-{dataset}"
|
|
data_dir = os.path.join(save_dir, dataname)
|
|
if not os.path.exists(data_dir):
|
|
base_url = "https://s3.amazonaws.com/research.metamind.io/wikitext/"
|
|
zip_file_url = base_url + dataname + "-v1.zip"
|
|
r = request.urlopen(zip_file_url)
|
|
with zipfile.ZipFile(io.BytesIO(r.read())) as zf:
|
|
zf.extractall(save_dir)
|
|
|
|
return _load(data_dir, filenames)
|
|
|
|
|
|
def ptb(save_dir="/tmp"):
|
|
"""
|
|
Load the PTB language modeling dataset:
|
|
https://paperswithcode.com/dataset/penn-treebank
|
|
"""
|
|
filenames = [
|
|
"ptb.train.txt",
|
|
"ptb.valid.txt",
|
|
"ptb.test.txt",
|
|
]
|
|
|
|
def download_and_save(save_dir):
|
|
base_url = "https://raw.githubusercontent.com/wojzaremba/lstm/master/data/"
|
|
for name in filenames:
|
|
out_file = os.path.join(save_dir, name)
|
|
if not os.path.exists(out_file):
|
|
request.urlretrieve(base_url + name, out_file)
|
|
|
|
save_dir = os.path.join(save_dir, "ptb")
|
|
if not os.path.exists(save_dir):
|
|
os.mkdir(save_dir)
|
|
download_and_save(save_dir)
|
|
|
|
return _load(save_dir, filenames)
|
|
|
|
|
|
def enwik8(save_dir="/tmp"):
|
|
"""
|
|
Load the enwik8 language modeling dataset:
|
|
https://mattmahoney.net/dc/textdata.html
|
|
"""
|
|
out_file = os.path.join(save_dir, "enwik8.zip")
|
|
if not os.path.exists(out_file):
|
|
request.urlretrieve("http://mattmahoney.net/dc/enwik8.zip", out_file)
|
|
|
|
with zipfile.ZipFile(out_file) as zf:
|
|
data = zf.read("enwik8")
|
|
|
|
num_test_bytes = 5000000 # 90 + 5 + 5 split
|
|
|
|
train_data = data[: -2 * num_test_bytes]
|
|
valid_data = data[-2 * num_test_bytes : -num_test_bytes]
|
|
test_data = data[-num_test_bytes:]
|
|
|
|
vocab = set(c for c in train_data)
|
|
vocab = {c: i for i, c in enumerate(vocab)}
|
|
|
|
def to_array(dataset):
|
|
return np.array([vocab[c] for c in dataset], dtype=np.uint32)
|
|
|
|
return vocab, to_array(train_data), to_array(valid_data), to_array(test_data)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
vocab, train, val, test = enwik8()
|
|
assert len(vocab) == 205, "enwik8: Wrong vocab size"
|
|
|
|
vocab, train, val, test = ptb()
|
|
assert len(vocab) == 10000, "PTB: Wrong vocab size"
|
|
|
|
vocab, train, val, test = wikitext()
|
|
assert len(vocab) == 33279, "WikiText: Wrong vocab size"
|