mlx-examples/transformer_lm/datasets.py
Volodymyr Kyrylov 7979b84a9e
transformer_lm: add --dataset enwik8 (#838)
* transformer_lm: add --dataset enwik8

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-26 11:59:01 -07:00

128 lines
3.8 KiB
Python

# Copyright © 2023 Apple Inc.
import io
import itertools
import os
import zipfile
from urllib import request
import numpy as np
def load_dataset(dataname):
if dataname == "enwik8":
return enwik8()
elif dataname == "ptb":
return ptb()
elif dataname == "wikitext2":
return wikitext(dataset="2")
else:
return wikitext(dataset="103")
def _load(save_dir, filenames):
# *NB* First file is expected to be the training set
with open(os.path.join(save_dir, filenames[0]), "r") as fid:
vocab = set(t for l in fid.readlines() for t in l.strip().split(" "))
eos = "<eos>"
vocab.add(eos)
vocab = {v: i for i, v in enumerate(vocab)}
def to_array(dataset):
with open(os.path.join(save_dir, dataset), "r") as fid:
lines = (l.strip().split(" ") for l in fid.readlines())
return np.array(
[vocab[w] for line in lines for w in itertools.chain(line, [eos])],
dtype=np.uint32,
)
datasets = [to_array(fn) for fn in filenames]
return vocab, *datasets
def wikitext(dataset="2", save_dir="/tmp"):
"""
Load the WikiText-* language modeling dataset:
https://paperswithcode.com/dataset/wikitext-2
https://paperswithcode.com/dataset/wikitext-103
"""
if dataset not in ("2", "103"):
raise ValueError(f'Dataset must be either "2" or "103", got {dataset}')
filenames = ["wiki.train.tokens", "wiki.valid.tokens", "wiki.test.tokens"]
dataname = f"wikitext-{dataset}"
data_dir = os.path.join(save_dir, dataname)
if not os.path.exists(data_dir):
base_url = "https://s3.amazonaws.com/research.metamind.io/wikitext/"
zip_file_url = base_url + dataname + "-v1.zip"
r = request.urlopen(zip_file_url)
with zipfile.ZipFile(io.BytesIO(r.read())) as zf:
zf.extractall(save_dir)
return _load(data_dir, filenames)
def ptb(save_dir="/tmp"):
"""
Load the PTB language modeling dataset:
https://paperswithcode.com/dataset/penn-treebank
"""
filenames = [
"ptb.train.txt",
"ptb.valid.txt",
"ptb.test.txt",
]
def download_and_save(save_dir):
base_url = "https://raw.githubusercontent.com/wojzaremba/lstm/master/data/"
for name in filenames:
out_file = os.path.join(save_dir, name)
if not os.path.exists(out_file):
request.urlretrieve(base_url + name, out_file)
save_dir = os.path.join(save_dir, "ptb")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
download_and_save(save_dir)
return _load(save_dir, filenames)
def enwik8(save_dir="/tmp"):
"""
Load the enwik8 language modeling dataset:
https://mattmahoney.net/dc/textdata.html
"""
out_file = os.path.join(save_dir, "enwik8.zip")
if not os.path.exists(out_file):
request.urlretrieve("http://mattmahoney.net/dc/enwik8.zip", out_file)
with zipfile.ZipFile(out_file) as zf:
data = zf.read("enwik8")
num_test_bytes = 5000000 # 90 + 5 + 5 split
train_data = data[: -2 * num_test_bytes]
valid_data = data[-2 * num_test_bytes : -num_test_bytes]
test_data = data[-num_test_bytes:]
vocab = set(c for c in train_data)
vocab = {c: i for i, c in enumerate(vocab)}
def to_array(dataset):
return np.array([vocab[c] for c in dataset], dtype=np.uint32)
return vocab, to_array(train_data), to_array(valid_data), to_array(test_data)
if __name__ == "__main__":
vocab, train, val, test = enwik8()
assert len(vocab) == 205, "enwik8: Wrong vocab size"
vocab, train, val, test = ptb()
assert len(vocab) == 10000, "PTB: Wrong vocab size"
vocab, train, val, test = wikitext()
assert len(vocab) == 33279, "WikiText: Wrong vocab size"