mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
291 lines
9.5 KiB
Python
291 lines
9.5 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import math
|
|
from dataclasses import dataclass, field
|
|
from typing import Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str = "mamba2"
|
|
num_heads: int = 128
|
|
head_dim: int = 64
|
|
vocab_size: int = 32768
|
|
hidden_size: int = 4096
|
|
state_size: int = 128
|
|
num_hidden_layers: int = 64
|
|
layer_norm_epsilon: float = 1e-5
|
|
expand: int = 2
|
|
conv_kernel: int = 4
|
|
n_groups: int = 8
|
|
use_bias: bool = False
|
|
use_conv_bias: bool = True
|
|
initializer_range: float = 0.1
|
|
residual_in_fp32: bool = True
|
|
time_step_rank: Union[int, str] = "auto"
|
|
time_step_min: float = 0.001
|
|
time_step_max: float = 0.1
|
|
time_step_floor: float = 1e-4
|
|
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
|
rescale_prenorm_residual: bool = False
|
|
use_cache: bool = True
|
|
rms_norm: bool = True
|
|
chunk_size: int = 256
|
|
tie_word_embeddings: bool = False
|
|
|
|
def __post_init__(self):
|
|
if not hasattr(self, "intermediate_size"):
|
|
self.intermediate_size = int(self.expand * self.hidden_size)
|
|
if not hasattr(self, "head_dim"):
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
if self.time_step_rank == "auto":
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
|
|
|
|
class Mamba2Cache:
|
|
def __init__(self):
|
|
self.cache = [None, None]
|
|
|
|
def __setitem__(self, idx, value):
|
|
self.cache[idx] = value
|
|
|
|
def __getitem__(self, idx):
|
|
return self.cache[idx]
|
|
|
|
@property
|
|
def state(self):
|
|
return self.cache
|
|
|
|
|
|
class MambaRMSNormGated(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
super().__init__()
|
|
self.weight = mx.ones((hidden_size,))
|
|
self.variance_epsilon = eps
|
|
|
|
def __call__(self, hidden_states, gate=None):
|
|
if gate is not None:
|
|
hidden_states = hidden_states * nn.silu(gate)
|
|
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
|
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states
|
|
|
|
class DepthWiseConv1d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = kernel_size
|
|
self.padding = padding
|
|
self.groups = groups if groups is not None else in_channels
|
|
|
|
# Ensure in_channels and out_channels are the same for depthwise conv
|
|
assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution"
|
|
# Ensure groups is equal to in_channels for depthwise conv
|
|
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
|
|
|
# Initialize weight with shape (out_channels, kernel_size, 1)
|
|
self.weight = mx.random.normal((out_channels, kernel_size, 1))
|
|
self.bias = mx.zeros((out_channels,)) if bias else None
|
|
|
|
def __call__(self, x, cache=None):
|
|
B, L, C = x.shape
|
|
_, K, _ = self.weight.shape
|
|
|
|
if cache is not None:
|
|
x = mx.concatenate([cache, x], axis=1)
|
|
else:
|
|
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
|
|
|
y = mx.conv_general(x, self.weight, groups=self.groups)
|
|
|
|
if self.bias is not None:
|
|
y = y + self.bias
|
|
|
|
return y, x[:, -K + 1 :, :]
|
|
|
|
|
|
class Mamba2Mixer(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.intermediate_size = args.intermediate_size
|
|
self.time_step_rank = args.time_step_rank
|
|
self.conv_kernel_size = args.conv_kernel
|
|
self.hidden_size = args.hidden_size
|
|
self.state_size = args.state_size
|
|
self.num_heads = args.num_heads
|
|
self.head_dim = args.hidden_size // args.num_heads
|
|
self.n_groups = args.n_groups
|
|
|
|
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
|
self.conv1d = DepthWiseConv1d(
|
|
in_channels=self.conv_dim,
|
|
out_channels=self.conv_dim,
|
|
bias=args.use_conv_bias,
|
|
kernel_size=args.conv_kernel,
|
|
groups=self.conv_dim,
|
|
padding=args.conv_kernel - 1
|
|
)
|
|
|
|
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
|
self.in_proj = nn.Linear(
|
|
self.hidden_size,
|
|
projection_size,
|
|
bias=args.use_bias
|
|
)
|
|
|
|
self.dt_bias = mx.ones((self.num_heads,))
|
|
self.A_log = mx.log(mx.arange(1, self.num_heads + 1))
|
|
self.D = mx.ones((self.num_heads,))
|
|
|
|
self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon)
|
|
|
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
|
|
|
|
def ssm_step(self, x, state, dt_proj):
|
|
A = -mx.exp(self.A_log)
|
|
D = self.D
|
|
delta = nn.softplus(dt_proj + self.dt_bias)
|
|
|
|
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
|
|
|
B = B.reshape(-1, self.n_groups, self.state_size)
|
|
C = C.reshape(-1, self.n_groups, self.state_size)
|
|
|
|
if state is None:
|
|
new_state = mx.expand_dims(delta, -1) * B
|
|
else:
|
|
new_state = mx.expand_dims(delta, -1) * (B + state * mx.exp(mx.expand_dims(delta, -1) * A))
|
|
|
|
y = mx.sum(new_state * C, axis=-1)
|
|
y = y + D * x[:, :self.num_heads]
|
|
return y, new_state
|
|
|
|
def __call__(self, x, cache):
|
|
B, T, D = x.shape
|
|
if cache is None:
|
|
cache = [None, None]
|
|
|
|
outputs = []
|
|
for t in range(T):
|
|
xt = x[:, t, :]
|
|
xz = self.in_proj(xt)
|
|
|
|
x_t, z_t, dt_proj = mx.split(
|
|
xz,
|
|
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
|
axis=-1
|
|
)
|
|
|
|
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
|
x_t = conv_out.squeeze(1)
|
|
x_t = nn.silu(x_t)
|
|
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
|
|
z_t = nn.silu(z_t)
|
|
|
|
# Print shapes for debugging
|
|
print(f"y_t shape: {y_t.shape}")
|
|
print(f"z_t shape: {z_t.shape}")
|
|
print(f"self.num_heads: {self.num_heads}")
|
|
print(f"self.intermediate_size: {self.intermediate_size}")
|
|
print(f"self.head_dim: {self.head_dim}")
|
|
|
|
# Flexible reshaping
|
|
y_t_reshaped = y_t.reshape(B, -1, 1)
|
|
z_t_reshaped = z_t.reshape(B, y_t_reshaped.shape[1], -1)
|
|
|
|
# Print reshaped shapes
|
|
print(f"y_t_reshaped shape: {y_t_reshaped.shape}")
|
|
print(f"z_t_reshaped shape: {z_t_reshaped.shape}")
|
|
|
|
# Element-wise multiplication
|
|
output_t = y_t_reshaped * z_t_reshaped
|
|
|
|
# Reshape to match the expected input of out_proj
|
|
output_t = output_t.reshape(B, self.intermediate_size)
|
|
|
|
print(f"output_t shape before out_proj: {output_t.shape}")
|
|
print(f"out_proj weight shape: {self.out_proj.weight.shape}")
|
|
|
|
output_t = self.out_proj(output_t)
|
|
outputs.append(output_t)
|
|
|
|
output = mx.stack(outputs, axis=1)
|
|
return output
|
|
|
|
|
|
class Mamba2Block(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.mixer = Mamba2Mixer(args)
|
|
self.norm = nn.RMSNorm(args.hidden_size)
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
return self.mixer(self.norm(x), cache) + x
|
|
|
|
|
|
class Mamba2(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)]
|
|
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None
|
|
):
|
|
hidden_states = self.embeddings(inputs)
|
|
|
|
if cache is None:
|
|
cache = Mamba2Cache(len(self.layers))
|
|
|
|
for i, layer in enumerate(self.layers):
|
|
hidden_states = layer(hidden_states, cache[i])
|
|
|
|
hidden_states = self.norm_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.backbone = Mamba2(args)
|
|
if not args.tie_word_embeddings:
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(self, inputs: mx.array, cache=None):
|
|
B, T = inputs.shape
|
|
|
|
x = self.backbone(inputs, cache)
|
|
|
|
if self.args.tie_word_embeddings:
|
|
logits = self.backbone.embeddings.as_linear(x)
|
|
else:
|
|
logits = self.lm_head(x)
|
|
|
|
return logits
|
|
|
|
def sanitize(self, weights):
|
|
for k, v in weights.items():
|
|
if "conv1d.weight" in k and v.ndim == 3:
|
|
weights[k] = v.moveaxis(2, 1)
|
|
return weights
|
|
|
|
def make_cache(self, batch_size: int = 1):
|
|
return [Mamba2Cache() for _ in range(len(self.layers))]
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.backbone.layers
|