mlx-examples/llms/mixtral/convert.py
Awni Hannun 2146bcd7ee
Quantize embedding / Update quantize API (#680)
* more async eval

* quantize embedding / update quantize api

* more updates for quantize

* update for quantize embeddings

* update sd quant API

* update sdxl quants

* error for datasets < batch_size

* async

* fix config loading

* fix quant

* fix tests

* fix req

* remove lm head if tie weights is true

* fix test
2024-04-18 18:16:10 -07:00

150 lines
4.1 KiB
Python

# Copyright © 2023 Apple Inc.
import argparse
import copy
import glob
import json
import shutil
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
import torch
from mixtral import Mixtral, ModelArgs
from mlx.utils import tree_flatten, tree_map, tree_unflatten
def convert(tf, config):
def convert_single(k, v):
v = v.to(torch.float16).numpy()
if "block_sparse_moe" not in k:
return [(k, v)]
if "gate" in k:
return [(k.replace("block_sparse_moe", "feed_forward"), v)]
# From: layers.N.block_sparse_moe.w
# To: layers.N.experts.M.w
num_experts = config["moe"]["num_experts"]
key_path = k.split(".")
v = np.split(v, num_experts, axis=0)
if key_path[-1] == "w2":
v = [u.T for u in v]
w_name = key_path.pop()
key_path[-1] = "feed_forward.experts"
return [
(".".join(key_path + [str(e), w_name, "weight"]), u)
for e, u in enumerate(v)
]
state = torch.load(tf)
weights = {}
for k, v in state.items():
weights.update(convert_single(k, v))
return weights
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model and update with the subset of weights:
config.pop("quantization", None)
model = Mixtral(ModelArgs(**config))
all_weights = dict(tree_flatten(model.parameters()))
weights = tree_map(mx.array, weights)
all_weights.update(weights)
all_weights = tree_unflatten(list(all_weights.items()))
model.update(all_weights)
# Quantize the model:
nn.quantize(
model,
args.q_group_size,
args.q_bits,
)
# Extract the subset of quantized weights:
all_weights = dict(tree_flatten(model.parameters()))
quantized_weights = {}
for k, v in all_weights.items():
if k not in weights:
continue
quantized_weights[k] = v
prefix = k.split(".")[:-1]
for qw in ["scales", "biases"]:
if (k := ".".join(prefix + [qw])) in all_weights:
quantized_weights[k] = all_weights[k]
# Update the config:
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
return quantized_weights, quantized_config
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Mixtral weights to MLX.")
parser.add_argument(
"--torch-path",
type=str,
default="Mixtral-8x7B-v0.1",
help="The path to the PyTorch model.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
)
parser.add_argument(
"-q",
"--quantize",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q-group-size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q-bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
torch_path = Path(args.torch_path)
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
with open("params.json") as fid:
config = json.load(fid)
# Copy tokenizer
shutil.copyfile(
str(torch_path / "tokenizer.model"),
str(mlx_path / "tokenizer.model"),
)
# Convert and save model in shards
torch_files = glob.glob(str(torch_path / "consolidated.*.pt"))
torch_files = sorted(torch_files, key=lambda tf: int(tf.split(".")[-2]))
for e, tf in enumerate(torch_files):
print(f"[INFO] Converting file {e + 1}/{len(torch_files)}")
weights = convert(tf, config)
if args.quantize:
print("[INFO] Quantizing")
weights, config = quantize(weights, config, args)
np.savez(str(mlx_path / f"weights.{e}.npz"), **weights)
# Save updated config
with open(mlx_path / "config.json", "w") as f:
config["model_type"] = "mixtral"
json.dump(config, f, indent=4)