mlx-examples/whisper
Awni Hannun b863e7cca0 format
2023-12-14 16:56:50 -08:00
..
whisper format 2023-12-14 16:56:50 -08:00
benchmark.py whisper default in fp16 2023-12-12 07:37:35 -08:00
README.md Corrected spelling of terms in whisper/README.md 2023-12-14 08:15:26 +08:00
requirements.txt update whisper readme and requirements 2023-12-07 13:01:44 -08:00
test.py format 2023-12-14 16:56:50 -08:00

Whisper

Speech recognition with Whisper in MLX. Whisper is a set of open source speech recognition models from OpenAI, ranging from 39 million to 1.5 billion parameters1.

Setup

First, install the dependencies.

pip install -r requirements.txt

Install ffmpeg:

# on macOS using Homebrew (https://brew.sh/)
brew install ffmpeg

Run

Transcribe audio with:

import whisper

text = whisper.transcribe(speech_file)["text"]

  1. Refer to the arXiv paper, blog post, and code for more details. ↩︎