Examples in the MLX framework
mlx
Go to file
2023-12-18 13:30:04 -08:00
bert Merge pull request #51 from jbarrow/main 2023-12-13 15:20:29 -08:00
cifar typo / nits 2023-12-14 12:14:01 -08:00
gcn fix comments before merge 2023-12-11 23:10:46 +01:00
llama Pass few shot file name to --few-shot arg(#141) 2023-12-18 13:30:04 -08:00
lora 32 GB example 2023-12-15 12:20:15 -08:00
mistral mixtral runs a bit faster 2023-12-12 08:36:40 -08:00
mixtral fix RoPE bug + minor updates 2023-12-14 21:45:25 -08:00
mnist Adding Requirements.txt 2023-12-11 20:45:39 -06:00
phi2 Rope theta to support Coda Llama (#121) 2023-12-15 19:51:51 -08:00
stable_diffusion Stable diffusion - check model weights shape and support int for "attention_head_dim" (#85) 2023-12-15 13:01:02 -08:00
transformer_lm black format 2023-12-09 14:15:25 -08:00
whisper format 2023-12-14 16:56:50 -08:00
.gitignore Benchmark all models if user allows. 2023-12-07 00:07:42 +05:30
.pre-commit-config.yaml a few examples 2023-11-29 08:17:26 -08:00
ACKNOWLEDGMENTS.md Citation + contributor acknowledgments section (#136) 2023-12-18 10:12:35 -08:00
CODE_OF_CONDUCT.md contribution + code of conduct 2023-11-29 12:31:18 -08:00
CONTRIBUTING.md Update CONTRIBUTING.md 2023-12-09 08:02:34 +09:00
LICENSE consistent copyright 2023-11-30 11:11:04 -08:00
README.md Citation + contributor acknowledgments section (#136) 2023-12-18 10:12:35 -08:00

MLX Examples

This repo contains a variety of standalone examples using the MLX framework.

The MNIST example is a good starting point to learn how to use MLX.

Some more useful examples include:

Contributing

We are grateful for all of our contributors. If you contribute to MLX Examples and wish to be acknowledged, please add your name to to the list in your pull request.

Citing MLX Examples

The MLX software suite was initially developed with equal contribution by Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find MLX Examples useful in your research and wish to cite it, please use the following BibTex entry:

@software{mlx2023,
  author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
  title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
  url = {https://github.com/ml-explore},
  version = {0.0},
  year = {2023},
}