mlx-examples/llava/llava.py
Noah Kasmanoff a429263905
LlaVA in MLX (#461)
* add: llava mlx first draft

* add: weights comparision

* add forward pass skeleton

* update: now  imports weights correctly

* delete base

* latest

* adding config

* fix: use config

* add mlx config

* feat: add image processor for llava processor

* wip

* feat: llava working example

* chore: refactor generate script

* chore: clean up

* add: warning to user if no <image> token despite using one

* add: __call__ to LlavaModel

* add: call to LlavaModel

* update fp

* clean up var names

* update: native GeLU

* Cleanup

* update generate and readme

* remove todo comment

* rearrange tests

* fix example code

* nits in README

* update readme

* nit in readme

* nits in README

* chore(llava): refactor image embedding merging logic

* min mlx version

* nits in readmes

* fix cli prompt, some nits

* updates, slight simplify

---------

Co-authored-by: anchen <li.anchen.au@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-03-01 10:28:35 -08:00

180 lines
6.1 KiB
Python

# Copyright © 2024 Apple Inc.
import glob
import inspect
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from huggingface_hub import snapshot_download
from language import LanguageModel, TextConfig
from vision import VisionConfig, VisionModel
@dataclass
class LlaVAConfig:
text_config: TextConfig
vision_config: VisionConfig
ignore_index: int = -100
image_token_index: int = 32000
vision_feature_select_strategy: str = "default"
vision_feature_layer: int = -2
vocab_size: int = 32000
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class LlavaMultiModalProjector(nn.Module):
def __init__(self, config: LlaVAConfig):
super().__init__()
self.linear_1 = nn.Linear(
config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
)
self.gelu = nn.GELU()
self.linear_2 = nn.Linear(
config.text_config.hidden_size, config.text_config.hidden_size, bias=True
)
def __call__(self, x: mx.array) -> mx.array:
x = self.linear_1(x)
x = self.gelu(x)
x = self.linear_2(x)
return x
class LlavaModel(nn.Module):
def __init__(self, config: LlaVAConfig):
self.config = config
self.vision_tower = VisionModel(config.vision_config)
self.language_model = LanguageModel(config.text_config)
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.vision_feature_layer = config.vision_feature_layer
self.vision_feature_select_strategy = config.vision_feature_select_strategy
def get_input_embeddings(
self,
input_ids: Optional[mx.array] = None,
pixel_values: Optional[mx.array] = None,
):
if pixel_values is None:
return self.language_model(input_ids)
# Get the input embeddings from the language model
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
# Get the ouptut hidden states from the vision model
*_, hidden_states = self.vision_tower(
pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
)
# Select the hidden states from the desired layer
selected_image_feature = hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(
"Unexpected feature selection strategy: "
f"{self.vision_feature_select_strategy}"
)
# Pass image features through the multi-modal projector
image_features = self.multi_modal_projector(selected_image_feature)
# Insert special image tokens in the input_ids
final_inputs_embeds = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids
)
return final_inputs_embeds
def _merge_input_ids_with_image_features(
self, image_features, inputs_embeds, input_ids
):
image_token_index = self.config.image_token_index
num_images, num_image_patches, embed_dim = image_features.shape
# Positions of <image> tokens in input_ids, assuming batch size is 1
image_positions = np.where(input_ids[0] == image_token_index)[0].tolist()
if len(image_positions) != num_images:
raise ValueError(
f"The number of image tokens ({len(image_positions)}) does not "
f" match the number of image inputs ({num_images})."
)
text_segments = []
start_idx = 0
for position in image_positions:
text_segments.append(inputs_embeds[:, start_idx:position])
start_idx = position + 1
image_embeddings = mx.split(image_features, image_features.shape[0])
final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
final_embeddings += [inputs_embeds[:, start_idx:]]
# Create a final embedding of shape
# (1, num_image_patches*num_images + sequence_len, embed_dim)
return mx.concatenate(final_embeddings, axis=1)
def __call__(self, input_ids: mx.array, pixel_values: mx.array, cache=None):
input_embddings = self.get_input_embeddings(input_ids, pixel_values)
logits, cache = self.language_model(
input_ids, cache=cache, inputs_embeds=input_embddings
)
return logits, cache
@staticmethod
def from_pretrained(path_or_hf_repo: str):
path = Path(path_or_hf_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=[
"*.json",
"*.safetensors",
"*.py",
"tokenizer.model",
"*.tiktoken",
],
)
)
with open(path / "config.json", "r") as f:
model_config = json.load(f)
model_config = LlaVAConfig.from_dict(model_config)
model_config.vision_config = VisionConfig.from_dict(model_config.vision_config)
model_config.text_config = TextConfig.from_dict(model_config.text_config)
model = LlavaModel(model_config)
weight_files = glob.glob(str(path / "*.safetensors"))
if not weight_files:
raise FileNotFoundError(f"No safetensors found in {path}")
weights = {}
for wf in weight_files:
weights.update(mx.load(wf))
weights = VisionModel.sanitize(weights)
weights = LanguageModel.sanitize(weights)
model.load_weights(list(weights.items()))
return model