mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00

* feat(mlx-lm): add de-quant for fuse * chore: disable quant in to linear when de-quant enabled * chore: add better error handling for adapter file not found
70 lines
2.0 KiB
Python
70 lines
2.0 KiB
Python
import os
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.utils import tree_unflatten
|
|
|
|
from .lora import LoRALinear
|
|
|
|
|
|
def apply_lora_layers(model: nn.Module, adapter_file: str) -> nn.Module:
|
|
"""
|
|
Apply LoRA layers to the model.
|
|
|
|
Args:
|
|
model (nn.Module): The neural network model.
|
|
adapter_file (str): Path to the adapter configuration file.
|
|
|
|
Returns:
|
|
nn.Module: The updated model with LoRA layers applied.
|
|
"""
|
|
if not os.path.exists(adapter_file):
|
|
raise FileNotFoundError(f"The adapter file does not exist: {adapter_file}")
|
|
|
|
adapters = list(mx.load(adapter_file).items())
|
|
|
|
linear_replacements = []
|
|
lora_layers = set(
|
|
[name.replace(".lora_a", "").replace(".lora_b", "") for name, _ in adapters]
|
|
)
|
|
for name, module in model.named_modules():
|
|
if name in lora_layers:
|
|
replacement_module = LoRALinear.from_linear(module)
|
|
linear_replacements.append((name, replacement_module))
|
|
|
|
model.update_modules(tree_unflatten(linear_replacements))
|
|
return model
|
|
|
|
|
|
def dequantize(model: nn.Module) -> nn.Module:
|
|
"""
|
|
Dequantize the quantized linear layers in the model.
|
|
|
|
Args:
|
|
model (nn.Module): The model with quantized linear layers.
|
|
|
|
Returns:
|
|
nn.Module: The model with dequantized layers.
|
|
"""
|
|
de_quantize_layers = []
|
|
for n, m in model.named_modules():
|
|
if isinstance(m, nn.QuantizedLinear):
|
|
bias = "bias" in m
|
|
weight = m.weight
|
|
weight = mx.dequantize(
|
|
weight,
|
|
m.scales,
|
|
m.biases,
|
|
m.group_size,
|
|
m.bits,
|
|
).astype(mx.float16)
|
|
output_dims, input_dims = weight.shape
|
|
linear = nn.Linear(input_dims, output_dims, bias=bias)
|
|
linear.weight = weight
|
|
if bias:
|
|
linear.bias = m.bias
|
|
de_quantize_layers.append((n, linear))
|
|
if len(de_quantize_layers) > 0:
|
|
model.update_modules(tree_unflatten(de_quantize_layers))
|
|
return model
|