mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* more async eval * quantize embedding / update quantize api * more updates for quantize * update for quantize embeddings * update sd quant API * update sdxl quants * error for datasets < batch_size * async * fix config loading * fix quant * fix tests * fix req * remove lm head if tie weights is true * fix test
330 lines
9.8 KiB
Python
330 lines
9.8 KiB
Python
import json
|
|
from functools import partial
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
REPLACEMENT_CHAR = "\ufffd"
|
|
|
|
|
|
def _remove_space(x):
|
|
if x and x[0] == " ":
|
|
return x[1:]
|
|
return x
|
|
|
|
|
|
class StreamingDetokenizer:
|
|
"""The streaming detokenizer interface so that we can detokenize one token at a time.
|
|
|
|
Example usage is as follows:
|
|
|
|
detokenizer = ...
|
|
|
|
# Reset the tokenizer state
|
|
detokenizer.reset()
|
|
|
|
for token in generate(...):
|
|
detokenizer.add_token(token.item())
|
|
|
|
# Contains the whole text so far. Some tokens may not be included
|
|
# since it contains whole words usually.
|
|
detokenizer.text
|
|
|
|
# Contains the printable segment (usually a word) since the last
|
|
# time it was accessed
|
|
detokenizer.last_segment
|
|
|
|
# Contains all the tokens added so far
|
|
detokenizer.tokens
|
|
|
|
# Make sure that we detokenize any remaining tokens
|
|
detokenizer.finalize()
|
|
|
|
# Now detokenizer.text should match tokenizer.decode(detokenizer.tokens)
|
|
"""
|
|
|
|
__slots__ = ("text", "tokens", "offset")
|
|
|
|
def reset(self):
|
|
raise NotImplementedError()
|
|
|
|
def add_token(self, token):
|
|
raise NotImplementedError()
|
|
|
|
def finalize(self):
|
|
raise NotImplementedError()
|
|
|
|
@property
|
|
def last_segment(self):
|
|
"""Return the last segment of readable text since last time this property was accessed."""
|
|
text = self.text
|
|
if text and text[-1] != REPLACEMENT_CHAR:
|
|
segment = text[self.offset :]
|
|
self.offset = len(text)
|
|
return segment
|
|
return ""
|
|
|
|
|
|
class NaiveStreamingDetokenizer(StreamingDetokenizer):
|
|
"""NaiveStreamingDetokenizer relies on the underlying tokenizer
|
|
implementation and should work with every tokenizer.
|
|
|
|
Its complexity is O(T^2) where T is the longest line since it will
|
|
repeatedly detokenize the same tokens until a new line is generated.
|
|
"""
|
|
|
|
def __init__(self, tokenizer):
|
|
self._tokenizer = tokenizer
|
|
self._tokenizer.decode([0])
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.offset = 0
|
|
self._tokens = []
|
|
self._text = ""
|
|
self._current_tokens = []
|
|
self._current_text = ""
|
|
|
|
def add_token(self, token):
|
|
self._current_tokens.append(token)
|
|
|
|
def finalize(self):
|
|
self._tokens.extend(self._current_tokens)
|
|
self._text += self._tokenizer.decode(self._current_tokens)
|
|
self._current_tokens = []
|
|
self._current_text = ""
|
|
|
|
@property
|
|
def text(self):
|
|
if self._current_tokens:
|
|
self._current_text = self._tokenizer.decode(self._current_tokens)
|
|
if self._current_text and self._current_text[-1] == "\n":
|
|
self._tokens.extend(self._current_tokens)
|
|
self._text += self._current_text
|
|
self._current_tokens.clear()
|
|
self._current_text = ""
|
|
return self._text + self._current_text
|
|
|
|
@property
|
|
def tokens(self):
|
|
return self._tokens
|
|
|
|
|
|
class SPMStreamingDetokenizer(StreamingDetokenizer):
|
|
"""A streaming detokenizer for SPM models.
|
|
|
|
It adds tokens to the text if the next token starts with the special SPM
|
|
underscore which results in linear complexity.
|
|
"""
|
|
|
|
def __init__(self, tokenizer, trim_space=True):
|
|
self.trim_space = trim_space
|
|
|
|
# Extract the tokens in a list from id to text
|
|
self.tokenmap = [None] * len(tokenizer.vocab)
|
|
for value, tokenid in tokenizer.vocab.items():
|
|
self.tokenmap[tokenid] = value
|
|
|
|
# Replace bytes with their value
|
|
for i in range(len(self.tokenmap)):
|
|
if self.tokenmap[i].startswith("<0x"):
|
|
self.tokenmap[i] = chr(int(self.tokenmap[i][3:5], 16))
|
|
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.offset = 0
|
|
self._unflushed = ""
|
|
self.text = ""
|
|
self.tokens = []
|
|
|
|
def add_token(self, token):
|
|
v = self.tokenmap[token]
|
|
if v[0] == "\u2581":
|
|
if self.text or not self.trim_space:
|
|
self.text += self._unflushed.replace("\u2581", " ")
|
|
else:
|
|
self.text = _remove_space(self._unflushed.replace("\u2581", " "))
|
|
self._unflushed = v
|
|
else:
|
|
self._unflushed += v
|
|
|
|
def finalize(self):
|
|
if self.text or not self.trim_space:
|
|
self.text += self._unflushed.replace("\u2581", " ")
|
|
else:
|
|
self.text = _remove_space(self._unflushed.replace("\u2581", " "))
|
|
self._unflushed = ""
|
|
|
|
|
|
class BPEStreamingDetokenizer(StreamingDetokenizer):
|
|
"""A streaming detokenizer for OpenAI style BPE models.
|
|
|
|
It adds tokens to the text if the next token starts with a space similar to
|
|
the SPM detokenizer.
|
|
"""
|
|
|
|
_byte_decoder = None
|
|
|
|
def __init__(self, tokenizer, trim_space=False):
|
|
self.trim_space = trim_space
|
|
|
|
# Extract the tokens in a list from id to text
|
|
self.tokenmap = [None] * len(tokenizer.vocab)
|
|
for value, tokenid in tokenizer.vocab.items():
|
|
self.tokenmap[tokenid] = value
|
|
|
|
self.reset()
|
|
|
|
# Make the BPE byte decoder from
|
|
# https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
self.make_byte_decoder()
|
|
|
|
def reset(self):
|
|
self.offset = 0
|
|
self._unflushed = ""
|
|
self.text = ""
|
|
self.tokens = []
|
|
|
|
def add_token(self, token):
|
|
v = self.tokenmap[token]
|
|
# if the token starts with space
|
|
if self._byte_decoder[v[0]] == 32:
|
|
current_text = bytearray(
|
|
self._byte_decoder[c] for c in self._unflushed
|
|
).decode("utf-8")
|
|
if self.text or not self.trim_space:
|
|
self.text += current_text
|
|
else:
|
|
self.text += _remove_space(current_text)
|
|
self._unflushed = v
|
|
else:
|
|
self._unflushed += v
|
|
|
|
def finalize(self):
|
|
current_text = bytearray(self._byte_decoder[c] for c in self._unflushed).decode(
|
|
"utf-8"
|
|
)
|
|
if self.text or not self.trim_space:
|
|
self.text += current_text
|
|
else:
|
|
self.text += _remove_space(current_text)
|
|
self._unflushed = ""
|
|
|
|
@classmethod
|
|
def make_byte_decoder(cls):
|
|
"""See https://github.com/openai/gpt-2/blob/master/src/encoder.py for the rationale."""
|
|
if cls._byte_decoder is not None:
|
|
return
|
|
|
|
char_to_bytes = {}
|
|
limits = [
|
|
0,
|
|
ord("!"),
|
|
ord("~") + 1,
|
|
ord("¡"),
|
|
ord("¬") + 1,
|
|
ord("®"),
|
|
ord("ÿ") + 1,
|
|
]
|
|
n = 0
|
|
for i, (start, stop) in enumerate(zip(limits, limits[1:])):
|
|
if i % 2 == 0:
|
|
for b in range(start, stop):
|
|
char_to_bytes[chr(2**8 + n)] = b
|
|
n += 1
|
|
else:
|
|
for b in range(start, stop):
|
|
char_to_bytes[chr(b)] = b
|
|
cls._byte_decoder = char_to_bytes
|
|
|
|
|
|
class TokenizerWrapper:
|
|
"""A wrapper that combines an HF tokenizer and a detokenizer.
|
|
|
|
Accessing any attribute other than the ``detokenizer`` is forwarded to the
|
|
huggingface tokenizer.
|
|
"""
|
|
|
|
def __init__(self, tokenizer, detokenizer_class=NaiveStreamingDetokenizer):
|
|
self._tokenizer = tokenizer
|
|
self._detokenizer = detokenizer_class(tokenizer)
|
|
|
|
def __getattr__(self, attr):
|
|
if attr == "detokenizer":
|
|
return self._detokenizer
|
|
else:
|
|
return getattr(self._tokenizer, attr)
|
|
|
|
|
|
def _match(a, b):
|
|
if type(a) != type(b):
|
|
return False
|
|
if isinstance(a, dict):
|
|
return len(a) == len(b) and all(k in b and _match(a[k], b[k]) for k in a)
|
|
if isinstance(a, list):
|
|
return len(a) == len(b) and all(_match(ai, bi) for ai, bi in zip(a, b))
|
|
|
|
return a == b
|
|
|
|
|
|
def _is_spm_decoder(decoder):
|
|
_target_description = {
|
|
"type": "Sequence",
|
|
"decoders": [
|
|
{"type": "Replace", "pattern": {"String": "▁"}, "content": " "},
|
|
{"type": "ByteFallback"},
|
|
{"type": "Fuse"},
|
|
{"type": "Strip", "content": " ", "start": 1, "stop": 0},
|
|
],
|
|
}
|
|
return _match(_target_description, decoder)
|
|
|
|
|
|
def _is_spm_decoder_no_space(decoder):
|
|
_target_description = {
|
|
"type": "Sequence",
|
|
"decoders": [
|
|
{"type": "Replace", "pattern": {"String": "▁"}, "content": " "},
|
|
{"type": "ByteFallback"},
|
|
{"type": "Fuse"},
|
|
],
|
|
}
|
|
return _match(_target_description, decoder)
|
|
|
|
|
|
def _is_bpe_decoder(decoder):
|
|
_target_description = {
|
|
"type": "ByteLevel",
|
|
"add_prefix_space": False,
|
|
"trim_offsets": False,
|
|
"use_regex": False,
|
|
}
|
|
|
|
return _match(_target_description, decoder)
|
|
|
|
|
|
def load_tokenizer(model_path, tokenizer_config_extra={}):
|
|
"""Load a huggingface tokenizer and try to infer the type of streaming
|
|
detokenizer to use.
|
|
|
|
Note, to use a fast streaming tokenizer, pass a local file path rather than
|
|
a Hugging Face repo ID.
|
|
"""
|
|
detokenizer_class = NaiveStreamingDetokenizer
|
|
|
|
tokenizer_file = model_path / "tokenizer.json"
|
|
if tokenizer_file.exists():
|
|
tokenizer_content = json.load(tokenizer_file.open())
|
|
if "decoder" in tokenizer_content:
|
|
if _is_spm_decoder(tokenizer_content["decoder"]):
|
|
detokenizer_class = SPMStreamingDetokenizer
|
|
elif _is_spm_decoder_no_space(tokenizer_content["decoder"]):
|
|
detokenizer_class = partial(SPMStreamingDetokenizer, trim_space=False)
|
|
elif _is_bpe_decoder(tokenizer_content["decoder"]):
|
|
detokenizer_class = BPEStreamingDetokenizer
|
|
|
|
return TokenizerWrapper(
|
|
AutoTokenizer.from_pretrained(model_path, **tokenizer_config_extra),
|
|
detokenizer_class,
|
|
)
|