mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 15:50:57 +08:00
196 lines
7.6 KiB
Python
196 lines
7.6 KiB
Python
import mlx.nn as nn
|
|
import mlx.core as mx
|
|
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
|
|
|
|
|
def resize_embeddings(model: nn.Module, tokenizer: TokenizerWrapper) -> nn.Module:
|
|
"""
|
|
Resizes model embeddings to accommodate new tokens, minimizing dequantization.
|
|
"""
|
|
old_embedding = model.model.embed_tokens
|
|
old_vocab_size = old_embedding.num_embeddings
|
|
new_vocab_size = len(tokenizer._tokenizer)
|
|
|
|
if old_vocab_size == new_vocab_size:
|
|
print("Vocab already sized right.")
|
|
return model
|
|
|
|
if new_vocab_size < old_vocab_size:
|
|
print("Warning: New vocab size is smaller than original. Proceeding with trim.")
|
|
|
|
if (
|
|
hasattr(old_embedding, "weight")
|
|
and hasattr(old_embedding, "scales")
|
|
and hasattr(old_embedding, "biases")
|
|
and hasattr(old_embedding, "group_size")
|
|
and hasattr(old_embedding, "bits")
|
|
):
|
|
# quantized embedding case: minimize dequantization
|
|
|
|
new_embedding = nn.QuantizedEmbedding(
|
|
new_vocab_size,
|
|
old_embedding.dims,
|
|
group_size=old_embedding.group_size,
|
|
bits=old_embedding.bits,
|
|
)
|
|
if new_vocab_size > old_vocab_size:
|
|
# Add new rows
|
|
new_row_count = new_vocab_size - old_vocab_size
|
|
new_rows = mx.random.normal((new_row_count, old_embedding.dims), scale=0.02)
|
|
new_rows_q, new_rows_scales, new_rows_biases = mx.quantize(
|
|
new_rows, old_embedding.group_size, old_embedding.bits
|
|
)
|
|
|
|
new_embedding.weight = mx.concatenate(
|
|
[old_embedding.weight, new_rows_q], axis=0
|
|
)
|
|
new_embedding.scales = mx.concatenate(
|
|
[old_embedding.scales, new_rows_scales], axis=0
|
|
)
|
|
new_embedding.biases = mx.concatenate(
|
|
[old_embedding.biases, new_rows_biases], axis=0
|
|
)
|
|
|
|
else: # new_vocab_size < old_vocab_size: Slice existing
|
|
new_embedding.weight = old_embedding.weight[:new_vocab_size]
|
|
new_embedding.scales = old_embedding.scales[:new_vocab_size]
|
|
new_embedding.biases = old_embedding.biases[:new_vocab_size]
|
|
|
|
else:
|
|
# non-quantized embedding case (fallback, less efficient)
|
|
# dequantize ONLY if necessary
|
|
# should ideally be avoided entirely for quantized models.
|
|
try:
|
|
dequantized_weights = mx.dequantize(
|
|
old_embedding.weight,
|
|
scales=old_embedding.scales,
|
|
biases=old_embedding.biases,
|
|
group_size=old_embedding.group_size,
|
|
bits=old_embedding.bits,
|
|
)
|
|
# handle missing quantization attributes
|
|
except (AttributeError, TypeError):
|
|
print("Falling back to random weights for embed_tokens.")
|
|
dequantized_weights = mx.random.normal(
|
|
(old_vocab_size, old_embedding.dims), loc=0.0, scale=0.02
|
|
)
|
|
|
|
new_embedding = nn.Embedding(new_vocab_size, old_embedding.dims)
|
|
new_weights = mx.zeros((new_vocab_size, old_embedding.dims))
|
|
min_vocab_size = min(old_vocab_size, new_vocab_size)
|
|
new_weights[:min_vocab_size] = dequantized_weights[:min_vocab_size]
|
|
if new_vocab_size > old_vocab_size:
|
|
new_weights[old_vocab_size:] = mx.random.normal(
|
|
(new_vocab_size - old_vocab_size, old_embedding.dims),
|
|
loc=0.0,
|
|
scale=0.02,
|
|
)
|
|
new_embedding.weight = new_weights
|
|
|
|
model.model.embed_tokens = new_embedding
|
|
|
|
# handle lm_head
|
|
if hasattr(model, "args") and getattr(model.args, "tie_word_embeddings", False):
|
|
if hasattr(new_embedding, "weight") and not isinstance(
|
|
new_embedding, nn.QuantizedEmbedding
|
|
):
|
|
model.model.embed_tokens.weight = new_embedding.weight
|
|
|
|
elif hasattr(model, "lm_head"):
|
|
old_lm_head = model.lm_head
|
|
if isinstance(old_lm_head, nn.QuantizedLinear):
|
|
output_dims, compressed_input_dims = old_lm_head.weight.shape
|
|
bits = old_lm_head.bits
|
|
input_dims = compressed_input_dims * (32 // bits)
|
|
group_size = old_lm_head.group_size
|
|
|
|
new_lm_head = nn.QuantizedLinear(
|
|
input_dims=input_dims,
|
|
output_dims=new_vocab_size,
|
|
bias="bias" in old_lm_head,
|
|
group_size=group_size,
|
|
bits=bits,
|
|
)
|
|
|
|
if new_vocab_size > old_vocab_size:
|
|
new_row_count = new_vocab_size - old_vocab_size
|
|
new_rows = mx.random.normal((new_row_count, input_dims), scale=0.02)
|
|
new_rows_q, new_rows_scales, new_rows_biases = mx.quantize(
|
|
new_rows, group_size, bits
|
|
)
|
|
new_lm_head.weight = mx.concatenate(
|
|
[old_lm_head.weight, new_rows_q], axis=0
|
|
)
|
|
new_lm_head.scales = mx.concatenate(
|
|
[old_lm_head.scales, new_rows_scales], axis=0
|
|
)
|
|
new_lm_head.biases = mx.concatenate(
|
|
[old_lm_head.biases, new_rows_biases], axis=0
|
|
)
|
|
else:
|
|
new_lm_head.weight = old_lm_head.weight[:new_vocab_size]
|
|
new_lm_head.scales = old_lm_head.scales[:new_vocab_size]
|
|
new_lm_head.biases = old_lm_head.biases[:new_vocab_size]
|
|
|
|
if "bias" in old_lm_head:
|
|
if new_vocab_size > old_vocab_size:
|
|
new_bias = mx.concatenate(
|
|
[old_lm_head.bias, mx.zeros(new_vocab_size - old_vocab_size)]
|
|
)
|
|
else:
|
|
new_bias = old_lm_head.bias[:new_vocab_size]
|
|
new_lm_head.bias = new_bias
|
|
# nn.Linear case
|
|
else:
|
|
new_lm_head = nn.Linear(
|
|
old_lm_head.input_dims, new_vocab_size, bias="bias" in old_lm_head
|
|
)
|
|
new_weights_lm = mx.zeros((new_vocab_size, old_lm_head.input_dims))
|
|
min_vocab_size = min(old_vocab_size, new_vocab_size)
|
|
new_weights_lm[:min_vocab_size] = old_lm_head.weight[:min_vocab_size]
|
|
if new_vocab_size > old_vocab_size:
|
|
new_weights_lm[old_vocab_size:] = mx.random.normal(
|
|
(new_vocab_size - old_vocab_size, old_lm_head.input_dims),
|
|
loc=0.0,
|
|
scale=0.02,
|
|
)
|
|
new_lm_head.weight = new_weights_lm
|
|
if "bias" in old_lm_head:
|
|
new_lm_head.bias = mx.zeros((new_vocab_size,))
|
|
new_lm_head.bias[:min_vocab_size] = old_lm_head.bias[:min_vocab_size]
|
|
|
|
model.lm_head = new_lm_head
|
|
|
|
return model
|
|
|
|
|
|
def update_tokenizer(
|
|
tokenizer: TokenizerWrapper, tokens: list[str], special: bool
|
|
) -> TokenizerWrapper:
|
|
"""
|
|
Appends new tokens to the end of the tokenizer vocab
|
|
"""
|
|
if special:
|
|
# todo TokenizerWrapper access method
|
|
tokenizer._tokenizer.add_special_tokens({"additional_special_tokens": tokens})
|
|
print(f"Tokenizer updated with special tokens: {tokens}")
|
|
print(f"Tokenizer vocab size after append: {len(tokenizer._tokenizer)}")
|
|
else:
|
|
# todo add regular tokens
|
|
pass
|
|
return tokenizer
|
|
|
|
|
|
def implement_new_tokens(
|
|
model: nn.Module,
|
|
tokenizer: TokenizerWrapper,
|
|
tokens: list[str],
|
|
special: bool = False,
|
|
) -> tuple[nn.Module, TokenizerWrapper]:
|
|
"""
|
|
Update model`s tokenizer and embeddings with new tokens accordingly
|
|
"""
|
|
tokenizer = update_tokenizer(tokenizer=tokenizer, tokens=tokens, special=special)
|
|
model = resize_embeddings(model=model, tokenizer=tokenizer)
|
|
return model, tokenizer
|