mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00

* Add --lora-all-linear option to apply LoRa to all linear transfer block layers * Moved to YAML config and added specification of rank & alpha * nits in conifg, more tests * nit * run tests for prs --------- Co-authored-by: Awni Hannun <awni@apple.com>
53 lines
1.3 KiB
Python
53 lines
1.3 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
from mlx.utils import tree_flatten
|
|
from mlx_lm import tuner, utils
|
|
|
|
|
|
class TestLora(unittest.TestCase):
|
|
|
|
def test_to_lora(self):
|
|
from mlx_lm.models import llama
|
|
|
|
args = llama.ModelArgs(
|
|
model_type="llama",
|
|
hidden_size=1024,
|
|
num_hidden_layers=4,
|
|
intermediate_size=2048,
|
|
num_attention_heads=4,
|
|
rms_norm_eps=1e-5,
|
|
vocab_size=10_000,
|
|
)
|
|
|
|
lora_layers = 4
|
|
|
|
def check_config(params):
|
|
n_keys = 2
|
|
if "keys" in params:
|
|
n_keys = len(params["keys"])
|
|
model = llama.Model(args)
|
|
model.freeze()
|
|
tuner.utils.linear_to_lora_layers(model, lora_layers, params)
|
|
trainable_params = sum(
|
|
v.size for _, v in tree_flatten(model.trainable_parameters())
|
|
)
|
|
self.assertEqual(
|
|
trainable_params, lora_layers * params["rank"] * 1024 * 2 * n_keys
|
|
)
|
|
|
|
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
|
check_config(params)
|
|
|
|
params["rank"] = 1
|
|
check_config(params)
|
|
|
|
params["keys"] = ["self_attn.k_proj"]
|
|
check_config(params)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|