mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 18:51:18 +08:00

* add segment anything model * add readme * reorg file structure * update * lint * minor updates * ack * fix weight loading * simplify * fix to run notebooks * amg in mlx * remove torch dependency * nit in README * return indices in nms * simplify * bugfix / simplify * fix bug' * simplify * fix notebook and remove output * couple more nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
230 lines
8.3 KiB
Python
230 lines
8.3 KiB
Python
from typing import Optional, Tuple, Type
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .common import LayerNorm2d
|
|
|
|
|
|
class PromptEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
image_embedding_size: Tuple[int, int],
|
|
input_image_size: Tuple[int, int],
|
|
mask_in_chans: int,
|
|
activation: Type[nn.Module] = nn.GELU,
|
|
) -> None:
|
|
"""
|
|
Encodes prompts for input to SAM's mask decoder.
|
|
|
|
Args:
|
|
embed_dim (int): The prompts' embedding dimension
|
|
image_embedding_size (tuple(int, int)): The spatial size of the
|
|
image embedding, as (H, W).
|
|
input_image_size (int): The padded size of the image as input
|
|
to the image encoder, as (H, W).
|
|
mask_in_chans (int): The number of hidden channels used for
|
|
encoding input masks.
|
|
activation (nn.Module): The activation to use when encoding
|
|
input masks.
|
|
"""
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.input_image_size = input_image_size
|
|
self.image_embedding_size = image_embedding_size
|
|
|
|
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
|
self.point_embed = [
|
|
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
|
|
]
|
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
|
|
|
self.mask_input_size = (
|
|
4 * image_embedding_size[0],
|
|
4 * image_embedding_size[1],
|
|
)
|
|
self.mask_embed = MaskEmbed(embed_dim, mask_in_chans, activation)
|
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
|
|
|
def _embed_points(
|
|
self,
|
|
points: mx.array,
|
|
labels: mx.array,
|
|
pad: bool,
|
|
pe_layer: nn.Module,
|
|
) -> mx.array:
|
|
"""Embeds point prompts."""
|
|
points = points + 0.5 # Shift to center of pixel
|
|
if pad:
|
|
padding_point = mx.zeros((points.shape[0], 1, 2))
|
|
padding_label = -mx.ones((labels.shape[0], 1))
|
|
points = mx.concatenate([points, padding_point], axis=1)
|
|
labels = mx.concatenate([labels, padding_label], axis=1)
|
|
point_embedding = pe_layer.forward_with_coords(points, self.input_image_size)
|
|
point_embedding = mx.where(
|
|
labels[..., None] == -1,
|
|
self.not_a_point_embed.weight[:, None],
|
|
point_embedding,
|
|
)
|
|
point_embedding = mx.where(
|
|
labels[..., None] == 0,
|
|
point_embedding + self.point_embed[0].weight[:, None],
|
|
point_embedding,
|
|
)
|
|
point_embedding = mx.where(
|
|
labels[..., None] == 1,
|
|
point_embedding + self.point_embed[1].weight[:, None],
|
|
point_embedding,
|
|
)
|
|
return point_embedding
|
|
|
|
def _embed_boxes(self, boxes: mx.array, pe_layer: nn.Module) -> mx.array:
|
|
"""Embeds box prompts."""
|
|
boxes = boxes + 0.5 # Shift to center of pixel
|
|
coords = boxes.reshape(-1, 2, 2)
|
|
corner_embedding = pe_layer.forward_with_coords(coords, self.input_image_size)
|
|
corner_embedding[:, 0, :] += self.point_embed[2].weight
|
|
corner_embedding[:, 1, :] += self.point_embed[3].weight
|
|
return corner_embedding
|
|
|
|
def _embed_masks(self, masks: mx.array) -> mx.array:
|
|
"""Embeds mask inputs."""
|
|
mask_embedding = self.mask_embed(masks)
|
|
return mask_embedding
|
|
|
|
def _get_batch_size(
|
|
self,
|
|
points: Optional[Tuple[mx.array, mx.array]],
|
|
boxes: Optional[mx.array],
|
|
masks: Optional[mx.array],
|
|
) -> int:
|
|
"""
|
|
Gets the batch size of the output given the batch size of the input prompts.
|
|
"""
|
|
if points is not None:
|
|
return points[0].shape[0]
|
|
elif boxes is not None:
|
|
return boxes.shape[0]
|
|
elif masks is not None:
|
|
return masks.shape[0]
|
|
else:
|
|
return 1
|
|
|
|
def __call__(
|
|
self,
|
|
points: Optional[Tuple[mx.array, mx.array]],
|
|
boxes: Optional[mx.array],
|
|
masks: Optional[mx.array],
|
|
pe_layer: nn.Module,
|
|
) -> Tuple[mx.array, mx.array]:
|
|
"""
|
|
Embeds different types of prompts, returning both sparse and dense
|
|
embeddings.
|
|
|
|
Args:
|
|
points (tuple(mx.array, mx.array) or none): point coordinates
|
|
and labels to embed
|
|
boxes (mx.array or none): boxes to embed
|
|
masks (mx.array or none): masks to embed
|
|
pe_layer (PositionEmbeddingRandom): shared position embedding
|
|
layer
|
|
|
|
Returns:
|
|
mx.array: sparse embeddings for the points and boxes, with shape
|
|
BxNx(embed_dim), where N is determined by the number of input points
|
|
and boxes.
|
|
mx.array: dense embeddings for the masks, in the shape
|
|
Bx(embed_H)x(embed_W)x(embed_dim)
|
|
"""
|
|
bs = self._get_batch_size(points, boxes, masks)
|
|
sparse_embeddings = mx.zeros((bs, 0, self.embed_dim))
|
|
if points is not None:
|
|
coords, labels = points
|
|
point_embeddings = self._embed_points(
|
|
coords, labels, pad=(boxes is None), pe_layer=pe_layer
|
|
)
|
|
sparse_embeddings = mx.concatenate(
|
|
[sparse_embeddings, point_embeddings], axis=1
|
|
)
|
|
if boxes is not None:
|
|
box_embeddings = self._embed_boxes(boxes, pe_layer=pe_layer)
|
|
sparse_embeddings = mx.concatenate(
|
|
[sparse_embeddings, box_embeddings], axis=1
|
|
)
|
|
|
|
if masks is not None:
|
|
dense_embeddings = self._embed_masks(masks)
|
|
else:
|
|
dense_embeddings = mx.broadcast_to(
|
|
self.no_mask_embed.weight,
|
|
shape=(
|
|
bs,
|
|
self.image_embedding_size[0],
|
|
self.image_embedding_size[1],
|
|
self.embed_dim,
|
|
),
|
|
)
|
|
|
|
return sparse_embeddings, dense_embeddings
|
|
|
|
|
|
class MaskEmbed(nn.Module):
|
|
def __init__(self, embed_dim, mask_in_chans, activation):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2)
|
|
self.layer_norm1 = LayerNorm2d(mask_in_chans // 4)
|
|
self.conv2 = nn.Conv2d(
|
|
mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2
|
|
)
|
|
self.layer_norm2 = LayerNorm2d(mask_in_chans)
|
|
self.conv3 = nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1)
|
|
self.activation = activation()
|
|
|
|
def __call__(self, x):
|
|
x = self.activation(self.layer_norm1(self.conv1(x)))
|
|
x = self.activation(self.layer_norm2(self.conv2(x)))
|
|
return self.conv3(x)
|
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module):
|
|
"""
|
|
Positional encoding using random spatial frequencies.
|
|
"""
|
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
|
super().__init__()
|
|
if scale is None or scale <= 0.0:
|
|
scale = 1.0
|
|
self.positional_embedding = scale * mx.random.normal((2, num_pos_feats))
|
|
|
|
def _pe_encoding(self, coords: mx.array) -> mx.array:
|
|
"""Positionally encode points that are normalized to [0,1]."""
|
|
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
|
coords = 2 * coords - 1
|
|
coords = coords @ self.positional_embedding
|
|
coords = 2 * mx.pi * coords
|
|
# outputs d_1 x ... x d_n x C shape
|
|
return mx.concatenate([mx.sin(coords), mx.cos(coords)], axis=-1)
|
|
|
|
def __call__(self, size: Tuple[int, int]) -> mx.array:
|
|
"""Generate positional encoding for a grid of the specified size."""
|
|
h, w = size
|
|
grid = mx.ones((h, w), dtype=mx.float32)
|
|
y_embed = grid.cumsum(axis=0) - 0.5
|
|
x_embed = grid.cumsum(axis=1) - 0.5
|
|
y_embed = y_embed / h
|
|
x_embed = x_embed / w
|
|
|
|
pe = self._pe_encoding(mx.stack([x_embed, y_embed], axis=-1))
|
|
return pe # HWC
|
|
|
|
def forward_with_coords(
|
|
self, coords_input: mx.array, image_size: Tuple[int, int]
|
|
) -> mx.array:
|
|
"""Positionally encode points that are not normalized to [0,1]."""
|
|
coords = coords_input * 1
|
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
|
return self._pe_encoding(coords.astype(mx.float32)) # B x N x C
|