mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 02:53:41 +08:00
387 lines
14 KiB
Python
387 lines
14 KiB
Python
import argparse
|
|
from dataclasses import dataclass
|
|
|
|
import numpy as np
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.utils import tree_flatten, tree_unflatten
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
d_ff: int = 2048
|
|
d_kv: int = 64
|
|
d_model: int = 512
|
|
dropout_rate: int = 0.1
|
|
layer_norm_epsilon: float = 1e-06
|
|
n_positions: int = 512
|
|
relative_attention_num_buckets: int = 32
|
|
relative_attention_max_distance: int = 128
|
|
num_heads: int = 8
|
|
num_layers: int = 6
|
|
decoder_start_token_id: int = 0
|
|
eos_token_id: int = 1
|
|
pad_token_id: int = 0
|
|
vocab_size: int = 32128
|
|
|
|
|
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
|
"""
|
|
Adapted from HF Tensorflow:
|
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
|
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
|
|
Args:
|
|
relative_position: an int32 Tensor
|
|
bidirectional: a boolean - whether the attention is bidirectional
|
|
num_buckets: an integer
|
|
max_distance: an integer
|
|
|
|
Returns:
|
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
"""
|
|
relative_buckets = 0
|
|
if bidirectional:
|
|
num_buckets //= 2
|
|
relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets
|
|
relative_position = mx.abs(relative_position)
|
|
else:
|
|
relative_position = -mx.min(relative_position, mx.zeros_like(relative_position))
|
|
# now relative_position is in the range [0, inf)
|
|
|
|
# half of the buckets are for exact increments in positions
|
|
max_exact = num_buckets // 2
|
|
is_small = relative_position < max_exact
|
|
|
|
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
|
relative_position_if_large = max_exact + (
|
|
mx.log(relative_position.astype(mx.float32) / max_exact)
|
|
/ np.log(max_distance / max_exact)
|
|
* (num_buckets - max_exact)
|
|
).astype(mx.int16)
|
|
relative_position_if_large = mx.minimum(
|
|
relative_position_if_large, num_buckets - 1
|
|
)
|
|
relative_buckets += mx.where(is_small, relative_position, relative_position_if_large)
|
|
return relative_buckets
|
|
|
|
|
|
class RelativePositionBias(nn.Module):
|
|
def __init__(self, config: ModelArgs, is_decoder: bool = False):
|
|
self.bidirectional = not is_decoder
|
|
self.num_buckets = config.relative_attention_num_buckets
|
|
self.max_distance = config.relative_attention_max_distance
|
|
self.n_heads = config.num_heads
|
|
self.embeddings = nn.Embedding(
|
|
config.relative_attention_num_buckets,
|
|
config.num_heads)
|
|
|
|
def __call__(self, query_length, key_length):
|
|
"""Compute binned relative position bias"""
|
|
context_position = mx.arange(query_length, dtype=mx.int32)[:, None]
|
|
memory_position = mx.arange(key_length, dtype=mx.int32)[None, :]
|
|
relative_position = memory_position - context_position # shape (query_length, key_length)
|
|
relative_position_bucket = _relative_position_bucket(
|
|
relative_position, # shape (query_length, key_length)
|
|
bidirectional=self.bidirectional,
|
|
num_buckets=self.num_buckets,
|
|
max_distance=self.max_distance,
|
|
)
|
|
values = self.embeddings(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
|
values = mx.expand_dims(values.transpose(2, 0, 1), 0) # shape (1, num_heads, query_length, key_length)
|
|
return values
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, config: ModelArgs, has_relative_attention_bias: bool = False):
|
|
super().__init__()
|
|
self.num_heads = config.num_heads
|
|
self.query_proj = nn.Linear(config.d_model, config.d_model, bias=False)
|
|
self.key_proj = nn.Linear(config.d_model, config.d_model, bias=False)
|
|
self.value_proj = nn.Linear(config.d_model, config.d_model, bias=False)
|
|
self.out_proj = nn.Linear(config.d_model, config.d_model, bias=False)
|
|
self.has_relative_attention_bias = has_relative_attention_bias
|
|
if has_relative_attention_bias:
|
|
self.relative_attention_bias = RelativePositionBias(config)
|
|
|
|
def __call__(self, queries, keys, values, mask=None):
|
|
queries = self.query_proj(queries)
|
|
keys = self.key_proj(keys)
|
|
values = self.value_proj(values)
|
|
|
|
num_heads = self.num_heads
|
|
B, L, D = queries.shape
|
|
_, S, _ = keys.shape
|
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
|
|
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
# Dimensions are [batch x num heads x sequence x hidden dim]
|
|
scores = queries @ keys
|
|
|
|
if mask is not None:
|
|
scores = scores + mask.astype(scores.dtype)
|
|
|
|
if self.has_relative_attention_bias:
|
|
position_bias = self.relative_attention_bias(L, S)
|
|
scores += position_bias
|
|
|
|
scores = mx.softmax(scores, axis=-1)
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.out_proj(values_hat)
|
|
|
|
@staticmethod
|
|
def create_additive_causal_mask(N: int, dtype: mx.Dtype = mx.float32):
|
|
indices = mx.arange(N)
|
|
mask = indices[:, None] < indices[None]
|
|
# usually inf but 1e9 is as good and softmax(full(1e9)) != nan
|
|
# TODO: Should replace this with finfo(dtype).min
|
|
mask = mask.astype(dtype) * -1e9
|
|
return mask
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, dims: int, eps: float = 1e-5, affine: bool = True):
|
|
super().__init__()
|
|
if affine:
|
|
self.weight = mx.ones((dims,))
|
|
self.eps = eps
|
|
self.dims = dims
|
|
|
|
def _extra_repr(self):
|
|
return f"{self.dims}, eps={self.eps}, affine={'weight' in self}"
|
|
|
|
def __call__(self, x):
|
|
means = mx.mean(x, axis=-1, keepdims=True)
|
|
var = mx.var(x, axis=-1, keepdims=True)
|
|
x = (x - means) * mx.rsqrt(var + self.eps)
|
|
return (self.weight * x) if "weight" in self else x
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Module):
|
|
def __init__(self, config: ModelArgs, has_relative_attention_bias: bool = False):
|
|
super().__init__()
|
|
mlp_dims = config.d_ff or config.d_model * 4
|
|
self.attention = MultiHeadAttention(
|
|
config, has_relative_attention_bias=has_relative_attention_bias
|
|
)
|
|
self.ln1 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.ln2 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.linear1 = nn.Linear(config.d_model, mlp_dims, bias=False)
|
|
self.linear2 = nn.Linear(mlp_dims, config.d_model, bias=False)
|
|
|
|
def __call__(self, x, mask):
|
|
y = self.ln1(x)
|
|
y = self.attention(y, y, y, mask)
|
|
x = x + y
|
|
|
|
y = self.ln2(x)
|
|
y = self.linear1(y)
|
|
y = mx.maximum(y, 0)
|
|
y = self.linear2(y)
|
|
x = x + y
|
|
|
|
return x
|
|
|
|
|
|
class TransformerEncoder(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.layers = [
|
|
TransformerEncoderLayer(config, has_relative_attention_bias=i == 0)
|
|
for i in range(config.num_layers)
|
|
]
|
|
self.ln = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
|
|
def __call__(self, x, mask):
|
|
for layer in self.layers:
|
|
x = layer(x, mask)
|
|
x = self.ln(x)
|
|
|
|
return x
|
|
|
|
|
|
class TransformerDecoderLayer(nn.Module):
|
|
def __init__(self, config: ModelArgs, has_relative_attention_bias: bool = False):
|
|
super().__init__()
|
|
mlp_dims = config.d_ff or config.d_model * 4
|
|
self.self_attention = MultiHeadAttention(
|
|
config, has_relative_attention_bias=has_relative_attention_bias
|
|
)
|
|
self.cross_attention = MultiHeadAttention(config)
|
|
self.ln1 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.ln2 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.ln3 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.linear1 = nn.Linear(config.d_model, mlp_dims, bias=False)
|
|
self.linear2 = nn.Linear(mlp_dims, config.d_model, bias=False)
|
|
|
|
def __call__(self, x, memory, x_mask, memory_mask):
|
|
y = self.ln1(x)
|
|
y = self.self_attention(y, y, y, x_mask)
|
|
x = x + y
|
|
|
|
y = self.ln2(x)
|
|
y = self.cross_attention(x, memory, memory, memory_mask)
|
|
x = x + y
|
|
|
|
y = self.ln3(x)
|
|
y = self.linear1(y)
|
|
y = mx.maximum(y, 0)
|
|
y = self.linear2(y)
|
|
x = x + y
|
|
|
|
return x
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.layers = [
|
|
TransformerDecoderLayer(config, has_relative_attention_bias=i == 0)
|
|
for i in range(config.num_layers)
|
|
]
|
|
self.ln = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
|
|
def __call__(self, x, memory, x_mask, memory_mask):
|
|
for layer in self.layers:
|
|
x = layer(x, memory, x_mask, memory_mask)
|
|
x = self.ln(x)
|
|
|
|
return x
|
|
|
|
|
|
class OutputHead(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
self.linear = nn.Linear(config.d_model, config.vocab_size)
|
|
|
|
def __call__(self, inputs):
|
|
return self.linear(inputs)
|
|
|
|
|
|
class T5(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
self.wte = nn.Embedding(config.vocab_size, config.d_model)
|
|
self.encoder = TransformerEncoder(config)
|
|
self.decoder = TransformerDecoder(config)
|
|
self.lm_head = OutputHead(config)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
decoder_inputs: mx.array,
|
|
mask: mx.array = None,
|
|
cache: mx.array = None,
|
|
) -> tuple[mx.array, mx.array]:
|
|
x = self.wte(inputs)
|
|
y = self.encoder(x, mask=None) #, cache)
|
|
|
|
if x.shape[1] > 1 and mask is None:
|
|
mask = MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
|
mask = mask.astype(x.dtype)
|
|
|
|
decoder_inputs = self.wte(decoder_inputs)
|
|
y, cache = self.decoder(x=decoder_inputs, x_mask=mask, memory=y) #, cache)
|
|
return self.lm_head(y), cache
|
|
|
|
|
|
# def generate(prompt: mx.array, model: T5, temp: Optional[float] = 0.0):
|
|
# def sample(logits):
|
|
# if temp == 0:
|
|
# return mx.argmax(logits, axis=-1)
|
|
# else:
|
|
# return mx.random.categorical(logits * (1 / temp))
|
|
|
|
# logits, cache = model(prompt)
|
|
# y = sample(logits[:, -1, :])
|
|
# yield y
|
|
|
|
# while True:
|
|
# logits, cache = model(y[:, None], cache=cache)
|
|
# y = sample(logits.squeeze(1))
|
|
# yield y
|
|
|
|
|
|
def load_model():
|
|
model = T5(ModelArgs())
|
|
weights = mx.load("weights.npz")
|
|
current_weights = tree_flatten(model.parameters())
|
|
weights_to_load = list(weights.items())
|
|
current_weights_dict = dict(current_weights)
|
|
current_weights_keys = set(current_weights_dict.keys())
|
|
weights_to_load_dict = dict(weights_to_load)
|
|
weights_to_load_keys = set(weights_to_load_dict.keys())
|
|
print("Missing weights: ", sorted(current_weights_keys - weights_to_load_keys))
|
|
print()
|
|
print("Weights ignored: ", sorted(weights_to_load_keys - current_weights_keys))
|
|
for key in current_weights_keys & weights_to_load_keys:
|
|
if weights_to_load_dict[key].shape != current_weights_dict[key].shape:
|
|
print("Shape mismatch for key: ", key)
|
|
print("Expected shape: ", current_weights_dict[key].shape)
|
|
print("Loading shape: ", weights_to_load_dict[key].shape)
|
|
model.update(tree_unflatten(weights_to_load))
|
|
tokenizer = AutoTokenizer.from_pretrained("t5-small", trust_remote_code=True)
|
|
return model, tokenizer
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="T5 Inference script")
|
|
parser.add_argument(
|
|
"--prompt",
|
|
help="",
|
|
default="translate English to German: That is good.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_tokens",
|
|
"-m",
|
|
type=int,
|
|
default=100,
|
|
help="Maximum number of tokens to generate",
|
|
)
|
|
parser.add_argument(
|
|
"--temp",
|
|
help="The sampling temperature.",
|
|
type=float,
|
|
default=0.0,
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
args = parser.parse_args()
|
|
|
|
mx.random.seed(args.seed)
|
|
|
|
model, tokenizer = load_model()
|
|
|
|
prompt = tokenizer(
|
|
args.prompt,
|
|
return_tensors="np",
|
|
return_attention_mask=False,
|
|
)["input_ids"]
|
|
|
|
prompt = mx.array(prompt)
|
|
|
|
print("[INFO] Generating with T5...", flush=True)
|
|
print(args.prompt, end="", flush=True)
|
|
|
|
print(model(prompt))
|
|
|
|
# tokens = []
|
|
# for token, _ in zip(generate(prompt, model), range(args.max_tokens)):
|
|
# tokens.append(token)
|
|
|
|
# if (len(tokens) % 10) == 0:
|
|
# mx.eval(tokens)
|
|
# s = tokenizer.decode([t.item() for t in tokens])
|
|
# print(s, end="", flush=True)
|
|
# tokens = []
|
|
|
|
# mx.eval(tokens)
|
|
# s = tokenizer.decode([t.item() for t in tokens])
|
|
# print(s, flush=True)
|