mlx-examples/llms/deepseek-coder/convert.py
Anchen 31ddbd7806
add deepseek coder example (#172)
* feat: add example for deepseek coder

* chore: remove hardcoded rope_scaling_factor

* feat: add quantization support

* chore: update readme

* chore: clean up the rope scalling factor param in create cos sin theta

* feat: add repetition_penalty

* style /consistency changes to ease future integration

* nits in README

* one more typo

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2023-12-28 21:42:22 -08:00

155 lines
4.6 KiB
Python

import argparse
import copy
import json
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
import torch
from deepseek_coder import DeepseekCoder, ModelArgs
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from transformers import AutoModelForCausalLM, AutoTokenizer
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
model_args = ModelArgs(**config)
model = DeepseekCoder(model_args)
weights = tree_map(mx.array, weights)
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
# Update the config:
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
def convert(args):
hf_path = Path(args.hf_path)
model = AutoModelForCausalLM.from_pretrained(
str(hf_path), trust_remote_code=True, torch_dtype=torch.float16
)
config = model.config.to_dict()
state_dict = model.state_dict()
tokenizer = AutoTokenizer.from_pretrained(str(hf_path), trust_remote_code=True)
# things to change
# 1. there's no "model." in the weight names
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
# 2. mlp is called feed_forward
state_dict = {k.replace("mlp", "feed_forward"): v for k, v in state_dict.items()}
# 3. up_proj, down_proj, gate_proj
state_dict = {k.replace("down_proj", "w2"): v for k, v in state_dict.items()}
state_dict = {k.replace("up_proj", "w3"): v for k, v in state_dict.items()}
state_dict = {k.replace("gate_proj", "w1"): v for k, v in state_dict.items()}
# 4. layernorms
state_dict = {
k.replace("input_layernorm", "attention_norm"): v for k, v in state_dict.items()
}
state_dict = {
k.replace("post_attention_layernorm", "ffn_norm"): v
for k, v in state_dict.items()
}
# 5. lm head
state_dict = {k.replace("lm_head", "output"): v for k, v in state_dict.items()}
# 6. token emb
state_dict = {
k.replace("embed_tokens", "tok_embeddings"): v for k, v in state_dict.items()
}
# 7. attention
state_dict = {k.replace("self_attn", "attention"): v for k, v in state_dict.items()}
state_dict = {k.replace("q_proj", "wq"): v for k, v in state_dict.items()}
state_dict = {k.replace("k_proj", "wk"): v for k, v in state_dict.items()}
state_dict = {k.replace("v_proj", "wv"): v for k, v in state_dict.items()}
state_dict = {k.replace("o_proj", "wo"): v for k, v in state_dict.items()}
weights = {k: v.numpy() for k, v in state_dict.items()}
config["rope_scaling_factor"] = config["rope_scaling"]["factor"]
keep_keys = set(
[
"vocab_size",
"hidden_size",
"num_attention_heads",
"num_key_value_heads",
"num_hidden_layers",
"max_position_embeddings",
"rms_norm_eps",
"intermediate_size",
"rope_scaling_factor",
]
)
for k in list(config.keys()):
if k not in keep_keys:
config.pop(k)
return weights, config, tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Deepseek coder model to npz")
parser.add_argument(
"--hf-path",
help="The huggingface model to be converted",
default="deepseek-ai/deepseek-coder-6.7b-instruct",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
)
parser.add_argument(
"-q",
"--quantize",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q-group-size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q-bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
weights, config, tokenizer = convert(args)
if args.quantize:
print("[INFO] Quantizing")
weights, config = quantize(weights, config, args)
np.savez(str(mlx_path / "weights.npz"), **weights)
tokenizer.save_pretrained(mlx_path)
with open(mlx_path / "config.json", "w") as f:
config["model_type"] = "deepseek_coder"
json.dump(config, f, indent=4)