mlx-examples/t5/convert.py
2023-12-15 11:30:17 -05:00

54 lines
1.5 KiB
Python

from transformers import T5ForConditionalGeneration
import numpy as np
SHARED_REPLACEMENT_PATTERNS = [
(".block.", ".layers."),
(".k.", ".key_proj."),
(".o.", ".out_proj."),
(".q.", ".query_proj."),
(".v.", ".value_proj."),
("shared.", "wte."),
(".layer.0.layer_norm.", ".ln1."),
(".layer.1.layer_norm.", ".ln2."),
(".layer.2.layer_norm.", ".ln3."),
(".final_layer_norm.", ".ln."),
]
ENCODER_REPLACEMENT_PATTERNS = [
(".layer.0.SelfAttention.", ".attention."),
(".layer.1.DenseReluDense.wi.", ".linear1."),
(".layer.1.DenseReluDense.wo.", ".linear2."),
]
DECODER_REPLACEMENT_PATTERNS = [
(".layer.0.SelfAttention.", ".self_attention."),
(".layer.1.EncDecAttention.", ".cross_attention."),
(".layer.2.DenseReluDense.wi.", ".linear1."),
(".layer.2.DenseReluDense.wo.", ".linear2."),
]
def replace_key(key: str) -> str:
for old, new in SHARED_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
if key.startswith("encoder."):
for old, new in ENCODER_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
elif key.startswith("decoder."):
for old, new in DECODER_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
return key
def convert():
model = T5ForConditionalGeneration.from_pretrained(
"t5-small", torch_dtype="auto"
)
state_dict = model.state_dict()
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
np.savez("weights.npz", **weights)
if __name__ == "__main__":
convert()