![]() * Tweaks to run dspy-produced calls to the server, with gemma template. following comment https://github.com/stanfordnlp/dspy/issues/385#issuecomment-1998939936 can try it out with: ```sh python -m server --model mlx-community/gemma-1.1-7b-it-4bit --port 1143 ``` modulo patching the relative imports in server.py ``` -from .tokenizer_utils import TokenizerWrapper -from .utils import generate_step, load +from mlx_lm.tokenizer_utils import TokenizerWrapper +from mlx_lm.utils import generate_step, load ``` and then, ont the dspy side: ```python import dspy lm = dspy.OpenAI(model_type="chat", api_base="http://localhost:11434/v1/", api_key="not_needed", max_tokens=250) lm("hello") ``` * simpler way to validate float or int * remove logic that works around incompatible templates, too gemma specific * tweak messages for common denominator * use generate.py workaround for DBXR * put behind flag * oops * Solution to chat template issue: pass in a custom template! The template should likely adhere to the OpenAI chat model. Here is such a template for Gemma. --chat-template "{{ bos_token }}{% set extra_system = '' %}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{% if role == 'system' %}{% set extra_system = extra_system + message['content'] %}{% else %}{% if role == 'user' and extra_system %}{% set message_system = 'System: ' + extra_system %}{% else %}{% set message_system = '' %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message_system + message['content'] | trim + '<end_of_turn>\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}" * remove convoluted solution * Tweak for when None is provided explicitly, and must be set to [] too. For example, the outlines library provides None explicitly. * style --------- Co-authored-by: Awni Hannun <awni@apple.com> |
||
---|---|---|
.. | ||
gguf_llm | ||
llama | ||
mistral | ||
mixtral | ||
mlx_lm | ||
speculative_decoding | ||
tests | ||
CONTRIBUTING.md | ||
MANIFEST.in | ||
README.md | ||
setup.py |
Generate Text with LLMs and MLX
The easiest way to get started is to install the mlx-lm
package:
With pip
:
pip install mlx-lm
With conda
:
conda install -c conda-forge mlx-lm
The mlx-lm
package also has:
Python API
You can use mlx-lm
as a module:
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Mistral-7B-Instruct-v0.3-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
To see a description of all the arguments you can do:
>>> help(generate)
The mlx-lm
package also comes with functionality to quantize and optionally
upload models to the Hugging Face Hub.
You can convert models in the Python API with:
from mlx_lm import convert
repo = "mistralai/Mistral-7B-Instruct-v0.3"
upload_repo = "mlx-community/My-Mistral-7B-Instruct-v0.3-4bit"
convert(repo, quantize=True, upload_repo=upload_repo)
This will generate a 4-bit quantized Mistral 7B and upload it to the repo
mlx-community/My-Mistral-7B-Instruct-v0.3-4bit
. It will also save the
converted model in the path mlx_model
by default.
To see a description of all the arguments you can do:
>>> help(convert)
Streaming
For streaming generation, use the stream_generate
function. This returns a
generator object which streams the output text. For example,
from mlx_lm import load, stream_generate
repo = "mlx-community/Mistral-7B-Instruct-v0.3-4bit"
model, tokenizer = load(repo)
prompt = "Write a story about Einstein"
for t in stream_generate(model, tokenizer, prompt, max_tokens=512):
print(t, end="", flush=True)
print()
Command Line
You can also use mlx-lm
from the command line with:
mlx_lm.generate --model mistralai/Mistral-7B-Instruct-v0.3 --prompt "hello"
This will download a Mistral 7B model from the Hugging Face Hub and generate text using the given prompt.
For a full list of options run:
mlx_lm.generate --help
To quantize a model from the command line run:
mlx_lm.convert --hf-path mistralai/Mistral-7B-Instruct-v0.3 -q
For more options run:
mlx_lm.convert --help
You can upload new models to Hugging Face by specifying --upload-repo
to
convert
. For example, to upload a quantized Mistral-7B model to the
MLX Hugging Face community you can do:
mlx_lm.convert \
--hf-path mistralai/Mistral-7B-Instruct-v0.3 \
-q \
--upload-repo mlx-community/my-4bit-mistral
Supported Models
The example supports Hugging Face format Mistral, Llama, and Phi-2 style models. If the model you want to run is not supported, file an issue or better yet, submit a pull request.
Here are a few examples of Hugging Face models that work with this example:
- mistralai/Mistral-7B-v0.1
- meta-llama/Llama-2-7b-hf
- deepseek-ai/deepseek-coder-6.7b-instruct
- 01-ai/Yi-6B-Chat
- microsoft/phi-2
- mistralai/Mixtral-8x7B-Instruct-v0.1
- Qwen/Qwen-7B
- pfnet/plamo-13b
- pfnet/plamo-13b-instruct
- stabilityai/stablelm-2-zephyr-1_6b
- internlm/internlm2-7b
Most Mistral, Llama, Phi-2, and Mixtral style models should work out of the box.
For some models (such as Qwen
and plamo
) the tokenizer requires you to
enable the trust_remote_code
option. You can do this by passing
--trust-remote-code
in the command line. If you don't specify the flag
explicitly, you will be prompted to trust remote code in the terminal when
running the model.
For Qwen
models you must also specify the eos_token
. You can do this by
passing --eos-token "<|endoftext|>"
in the command
line.
These options can also be set in the Python API. For example:
model, tokenizer = load(
"qwen/Qwen-7B",
tokenizer_config={"eos_token": "<|endoftext|>", "trust_remote_code": True},
)