mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00

* initial encodec * works * nits * use fast group norm * fix for rnn layer * fix mlx version * use custom LSTM kernel * audio encodec * fix example, support batched inference * nits
31 lines
599 B
Python
31 lines
599 B
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import time
|
|
|
|
import mlx.core as mx
|
|
from utils import load
|
|
|
|
model, processor = load("mlx-community/encodec-48khz-float32")
|
|
|
|
audio = mx.random.uniform(shape=(288000, 2))
|
|
feats, mask = processor(audio)
|
|
mx.eval(model, feats, mask)
|
|
|
|
|
|
@mx.compile
|
|
def fun():
|
|
codes, scales = model.encode(feats, mask, bandwidth=3)
|
|
reconstructed = model.decode(codes, scales, mask)
|
|
return reconstructed
|
|
|
|
|
|
for _ in range(5):
|
|
mx.eval(fun())
|
|
|
|
tic = time.time()
|
|
for _ in range(10):
|
|
mx.eval(fun())
|
|
toc = time.time()
|
|
ms = 1000 * (toc - tic) / 10
|
|
print(f"Time per it: {ms:.3f}")
|