mlx-examples/llms/mlx_lm/generate.py
Michał Kurc 43d6deb3c1
mlx_lm: Add Streaming Capability to Generate Function (#807)
* Add streaming feature to text generation function

* separate stream and regular functions

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-03 09:04:39 -07:00

162 lines
4.1 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import argparse
import mlx.core as mx
from .utils import generate, load
DEFAULT_MODEL_PATH = "mlx_model"
DEFAULT_PROMPT = "hello"
DEFAULT_MAX_TOKENS = 100
DEFAULT_TEMP = 0.6
DEFAULT_TOP_P = 1.0
DEFAULT_SEED = 0
def setup_arg_parser():
"""Set up and return the argument parser."""
parser = argparse.ArgumentParser(description="LLM inference script")
parser.add_argument(
"--model",
type=str,
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
parser.add_argument(
"--adapter-path",
type=str,
help="Optional path for the trained adapter weights and config.",
)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Enable trusting remote code for tokenizer",
)
parser.add_argument(
"--eos-token",
type=str,
default=None,
help="End of sequence token for tokenizer",
)
parser.add_argument(
"--prompt", default=DEFAULT_PROMPT, help="Message to be processed by the model"
)
parser.add_argument(
"--max-tokens",
"-m",
type=int,
default=DEFAULT_MAX_TOKENS,
help="Maximum number of tokens to generate",
)
parser.add_argument(
"--temp", type=float, default=DEFAULT_TEMP, help="Sampling temperature"
)
parser.add_argument(
"--top-p", type=float, default=DEFAULT_TOP_P, help="Sampling top-p"
)
parser.add_argument("--seed", type=int, default=DEFAULT_SEED, help="PRNG seed")
parser.add_argument(
"--ignore-chat-template",
action="store_true",
help="Use the raw prompt without the tokenizer's chat template.",
)
parser.add_argument(
"--use-default-chat-template",
action="store_true",
help="Use the default chat template",
)
parser.add_argument(
"--colorize",
action="store_true",
help="Colorize output based on T[0] probability",
)
parser.add_argument(
"--cache-limit-gb",
type=int,
default=None,
help="Set the MLX cache limit in GB",
required=False,
)
return parser
def colorprint(color, s):
color_codes = {
"black": 30,
"red": 31,
"green": 32,
"yellow": 33,
"blue": 34,
"magenta": 35,
"cyan": 36,
"white": 39,
}
ccode = color_codes.get(color, 30)
print(f"\033[1m\033[{ccode}m{s}\033[0m", end="", flush=True)
def colorprint_by_t0(s, t0):
if t0 > 0.95:
color = "white"
elif t0 > 0.70:
color = "green"
elif t0 > 0.30:
color = "yellow"
else:
color = "red"
colorprint(color, s)
def main():
parser = setup_arg_parser()
args = parser.parse_args()
mx.random.seed(args.seed)
if args.cache_limit_gb is not None:
mx.metal.set_cache_limit(args.cache_limit_gb * 1024 * 1024 * 1024)
# Building tokenizer_config
tokenizer_config = {"trust_remote_code": True if args.trust_remote_code else None}
if args.eos_token is not None:
tokenizer_config["eos_token"] = args.eos_token
model, tokenizer = load(
args.model,
adapter_path=args.adapter_path,
tokenizer_config=tokenizer_config,
)
if args.use_default_chat_template:
if tokenizer.chat_template is None:
tokenizer.chat_template = tokenizer.default_chat_template
if not args.ignore_chat_template and (
hasattr(tokenizer, "apply_chat_template")
and tokenizer.chat_template is not None
):
messages = [{"role": "user", "content": args.prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
else:
prompt = args.prompt
formatter = colorprint_by_t0 if args.colorize else None
generate(
model,
tokenizer,
prompt,
args.max_tokens,
verbose=True,
formatter=formatter,
temp=args.temp,
top_p=args.top_p,
)
if __name__ == "__main__":
main()