mlx-examples/bert/model.py
yzimmermann 4680ef4413
Enable more BERT models (#580)
* Update convert.py

* Update model.py

* Update test.py

* Update model.py

* Update convert.py

* Add files via upload

* Update convert.py

* format

* nit

* nit

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-03-19 17:21:33 -07:00

171 lines
5.2 KiB
Python

import argparse
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import numpy
import numpy as np
from mlx.utils import tree_unflatten
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizerBase
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size
)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def __call__(
self, input_ids: mx.array, token_type_ids: mx.array = None
) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
if token_type_ids is None:
# If token_type_ids is not provided, default to zeros
token_type_ids = mx.zeros_like(input_ids)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config):
super().__init__()
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.hidden_size,
num_heads=config.num_attention_heads,
mlp_dims=config.intermediate_size,
)
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array = None,
attention_mask: mx.array = None,
) -> Tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
def load_model(
bert_model: str, weights_path: str
) -> Tuple[Bert, PreTrainedTokenizerBase]:
if not Path(weights_path).exists():
raise ValueError(f"No model weights found in {weights_path}")
config = AutoConfig.from_pretrained(bert_model)
# create and update the model
model = Bert(config)
model.load_weights(weights_path)
tokenizer = AutoTokenizer.from_pretrained(bert_model)
return model, tokenizer
def run(bert_model: str, mlx_model: str, batch: List[str]):
model, tokenizer = load_model(bert_model, mlx_model)
tokens = tokenizer(batch, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
return model(**tokens)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the BERT model using MLX.")
parser.add_argument(
"--bert-model",
type=str,
default="bert-base-uncased",
help="The huggingface name of the BERT model to save.",
)
parser.add_argument(
"--mlx-model",
type=str,
default="weights/bert-base-uncased.npz",
help="The path of the stored MLX BERT weights (npz file).",
)
parser.add_argument(
"--text",
type=str,
default="This is an example of BERT working in MLX",
help="The text to generate embeddings for.",
)
args = parser.parse_args()
run(args.bert_model, args.mlx_model, args.text)