mlx-examples/llms/mlx_lm/models/internlm2.py
otriscon 46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00

245 lines
7.6 KiB
Python

from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
bias: bool = True
max_position_embeddings: int = 32768
num_key_value_heads: int = None
rope_theta: float = 10000
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
tie_word_embeddings: bool = False
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.rope_scaling:
required_keys = {"factor", "type"}
if not all(key in self.rope_scaling for key in required_keys):
raise ValueError(f"rope_scaling must contain keys {required_keys}")
if self.rope_scaling["type"] not in ["linear", "dynamic"]:
raise ValueError(
"rope_scaling 'type' currently only supports 'linear' or 'dynamic"
)
class DynamicNTKScalingRoPE(nn.Module):
"""Implements the rotary positional encoding with Dynamic NTK scaling."""
def __init__(
self,
dims: int,
max_position_embeddings: int = 2048,
traditional: bool = False,
base: float = 10000,
scale: float = 1.0,
):
super().__init__()
self.max_position_embeddings = max_position_embeddings
self.original_base = base
self.dims = dims
self.traditional = traditional
self.scale = scale
def extra_repr(self):
return f"{self.dims}, traditional={self.traditional}, max_position_embeddings={self.max_position_embeddings}, scaling_factor={self.scaling_factor}"
def __call__(self, x, offset: int = 0):
seq_len = x.shape[1] + offset
if seq_len > self.max_position_embeddings:
base = self.original_base * (
(self.scale * seq_len / self.max_position_embeddings) - (self.scale - 1)
) ** (self.dims / (self.dims - 2))
else:
base = self.original_base
return mx.fast.rope(
x,
self.dims,
traditional=self.traditional,
base=base,
scale=self.scale,
offset=offset,
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.n_kv_groups = n_heads // args.num_key_value_heads
self.head_dim = head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.wqkv = nn.Linear(
dim, (n_heads + 2 * n_kv_heads) * head_dim, bias=args.bias
)
self.wo = nn.Linear(n_heads * head_dim, dim, bias=args.bias)
rope_scale = (
1 / args.rope_scaling["factor"]
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
else 2.0
)
self.rope = DynamicNTKScalingRoPE(
head_dim,
max_position_embeddings=args.max_position_embeddings,
traditional=args.rope_traditional,
base=args.rope_theta,
scale=rope_scale,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
qkv_states = self.wqkv(x)
qkv_states = qkv_states.reshape(B, L, -1, 2 + self.n_kv_groups, self.head_dim)
queries = qkv_states[..., : self.n_kv_groups, :]
queries = queries.reshape(B, L, -1, self.head_dim)
keys = qkv_states[..., -2, :]
values = qkv_states[..., -1, :]
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.wo(output)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.attention = Attention(args)
self.feed_forward = MLP(args.hidden_size, args.intermediate_size)
self.attention_norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.ffn_norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r = self.attention(self.attention_norm(x), mask, cache)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
out = h + r
return out
class InternLM2Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
assert args.vocab_size > 0
self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.tok_embeddings(inputs)
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, cache=c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = InternLM2Model(args)
if not args.tie_word_embeddings:
self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
if self.args.tie_word_embeddings:
out = self.model.tok_embeddings.as_linear(out)
else:
out = self.output(out)
return out
def sanitize(self, weights):
# Remove unused precomputed rotary freqs
return {k: v for k, v in weights.items() if "attention.rope.inv_freq" not in k}
@property
def layers(self):
return self.model.layers
@property
def head_dim(self):
return self.args.hidden_size // self.args.num_attention_heads
@property
def n_kv_heads(self):
return self.args.num_key_value_heads